Author: Louis H. Kauffman
Publisher: World Scientific
ISBN: 9789810203436
Category : Mathematics
Languages : en
Pages : 558
Book Description
This book is an introductory explication on the theme of knot and link invariants as generalized amplitudes (vacuum-vacuum amplitudes) for a quasi-physical process. The demands of the knot theory, coupled with a quantum statistical frame work create a context that naturally and powerfully includes an extraordinary range of interelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward the knot theory and its relations with these subjects. This has the advantage of providing very direct access to the algebra and to the combinatorial topology, as well as the physical ideas. This book is divided into 2 parts: Part I of the book is a systematic course in knots and physics starting from the ground up. Part II is a set of lectures on various topics related with and sometimes based on Part I. Part II also explores some side-topics such as frictional properties of knots, relations with combinatorics, knots in dynamical systems.
Knots and Physics
Author: Louis H. Kauffman
Publisher: World Scientific
ISBN: 9789810203436
Category : Mathematics
Languages : en
Pages : 558
Book Description
This book is an introductory explication on the theme of knot and link invariants as generalized amplitudes (vacuum-vacuum amplitudes) for a quasi-physical process. The demands of the knot theory, coupled with a quantum statistical frame work create a context that naturally and powerfully includes an extraordinary range of interelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward the knot theory and its relations with these subjects. This has the advantage of providing very direct access to the algebra and to the combinatorial topology, as well as the physical ideas. This book is divided into 2 parts: Part I of the book is a systematic course in knots and physics starting from the ground up. Part II is a set of lectures on various topics related with and sometimes based on Part I. Part II also explores some side-topics such as frictional properties of knots, relations with combinatorics, knots in dynamical systems.
Publisher: World Scientific
ISBN: 9789810203436
Category : Mathematics
Languages : en
Pages : 558
Book Description
This book is an introductory explication on the theme of knot and link invariants as generalized amplitudes (vacuum-vacuum amplitudes) for a quasi-physical process. The demands of the knot theory, coupled with a quantum statistical frame work create a context that naturally and powerfully includes an extraordinary range of interelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward the knot theory and its relations with these subjects. This has the advantage of providing very direct access to the algebra and to the combinatorial topology, as well as the physical ideas. This book is divided into 2 parts: Part I of the book is a systematic course in knots and physics starting from the ground up. Part II is a set of lectures on various topics related with and sometimes based on Part I. Part II also explores some side-topics such as frictional properties of knots, relations with combinatorics, knots in dynamical systems.
The Geometry and Physics of Knots
Author: Michael Francis Atiyah
Publisher: Cambridge University Press
ISBN: 9780521395540
Category : Mathematics
Languages : en
Pages : 112
Book Description
These notes deal with an area that lies at the crossroads of mathematics and physics and rest primarily on the pioneering work of Vaughan Jones and Edward Witten, who related polynomial invariants of knots to a topological quantum field theory in 2+1 dimensions.
Publisher: Cambridge University Press
ISBN: 9780521395540
Category : Mathematics
Languages : en
Pages : 112
Book Description
These notes deal with an area that lies at the crossroads of mathematics and physics and rest primarily on the pioneering work of Vaughan Jones and Edward Witten, who related polynomial invariants of knots to a topological quantum field theory in 2+1 dimensions.
The Knot Book
Author: Colin Conrad Adams
Publisher: American Mathematical Soc.
ISBN: 0821836781
Category : Mathematics
Languages : en
Pages : 330
Book Description
Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.
Publisher: American Mathematical Soc.
ISBN: 0821836781
Category : Mathematics
Languages : en
Pages : 330
Book Description
Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.
Loops, Knots, Gauge Theories
Author: Rodolfo Gambini
Publisher: Cambridge University Press
ISBN: 1009290193
Category : Science
Languages : en
Pages : 341
Book Description
This volume provides a self-contained introduction to applications of loop representations in particle physics and quantum gravity, in order to explore the gauge invariant quantization of Yang-Mills theories and gravity. First published in 1996, this title has been reissued as an Open Access publication on Cambridge Core.
Publisher: Cambridge University Press
ISBN: 1009290193
Category : Science
Languages : en
Pages : 341
Book Description
This volume provides a self-contained introduction to applications of loop representations in particle physics and quantum gravity, in order to explore the gauge invariant quantization of Yang-Mills theories and gravity. First published in 1996, this title has been reissued as an Open Access publication on Cambridge Core.
Knots and Applications
Author: Louis H. Kauffman
Publisher: World Scientific
ISBN: 9789810220044
Category : Science
Languages : en
Pages : 502
Book Description
This volume is a collection of research papers devoted to the study of relationships between knot theory and the foundations of mathematics, physics, chemistry, biology and psychology. Included are reprints of the work of Lord Kelvin (Sir William Thomson) on the 19th century theory of vortex atoms, reprints of modern papers on knotted flux in physics and in fluid dynamics and knotted wormholes in general relativity. It also includes papers on Witten's approach to knots via quantum field theory and applications of this approach to quantum gravity and the Ising model in three dimensions. Other papers discuss the topology of RNA folding in relation to invariants of graphs and Vassiliev invariants, the entanglement structures of polymers, the synthesis of molecular Mobius strips and knotted molecules. The book begins with an article on the applications of knot theory to the foundations of mathematics and ends with an article on topology and visual perception. This volume will be of immense interest to all workers interested in new possibilities in the uses of knots and knot theory.
Publisher: World Scientific
ISBN: 9789810220044
Category : Science
Languages : en
Pages : 502
Book Description
This volume is a collection of research papers devoted to the study of relationships between knot theory and the foundations of mathematics, physics, chemistry, biology and psychology. Included are reprints of the work of Lord Kelvin (Sir William Thomson) on the 19th century theory of vortex atoms, reprints of modern papers on knotted flux in physics and in fluid dynamics and knotted wormholes in general relativity. It also includes papers on Witten's approach to knots via quantum field theory and applications of this approach to quantum gravity and the Ising model in three dimensions. Other papers discuss the topology of RNA folding in relation to invariants of graphs and Vassiliev invariants, the entanglement structures of polymers, the synthesis of molecular Mobius strips and knotted molecules. The book begins with an article on the applications of knot theory to the foundations of mathematics and ends with an article on topology and visual perception. This volume will be of immense interest to all workers interested in new possibilities in the uses of knots and knot theory.
Knots and Feynman Diagrams
Author: Dirk Kreimer
Publisher: Cambridge University Press
ISBN: 9780521587617
Category : Mathematics
Languages : en
Pages : 276
Book Description
This volume explains how knot theory and Feynman diagrams can be used to illuminate problems in quantum field theory. The author emphasizes how new discoveries in mathematics have inspired conventional calculational methods for perturbative quantum field theory to become more elegant and potentially more powerful methods. The material illustrates what may possibly be the most productive interface between mathematics and physics. As a result, it will be of interest to graduate students and researchers in theoretical and particle physics as well as mathematics.
Publisher: Cambridge University Press
ISBN: 9780521587617
Category : Mathematics
Languages : en
Pages : 276
Book Description
This volume explains how knot theory and Feynman diagrams can be used to illuminate problems in quantum field theory. The author emphasizes how new discoveries in mathematics have inspired conventional calculational methods for perturbative quantum field theory to become more elegant and potentially more powerful methods. The material illustrates what may possibly be the most productive interface between mathematics and physics. As a result, it will be of interest to graduate students and researchers in theoretical and particle physics as well as mathematics.
Introductory Lectures on Knot Theory
Author: Louis H. Kauffman
Publisher: World Scientific
ISBN: 9814313009
Category : Mathematics
Languages : en
Pages : 577
Book Description
More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.
Publisher: World Scientific
ISBN: 9814313009
Category : Mathematics
Languages : en
Pages : 577
Book Description
More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.
On Knots
Author: Louis H. Kauffman
Publisher: Princeton University Press
ISBN: 9780691084350
Category : Mathematics
Languages : en
Pages : 500
Book Description
On Knots is a journey through the theory of knots, starting from the simplest combinatorial ideas--ideas arising from the representation of weaving patterns. From this beginning, topological invariants are constructed directly: first linking numbers, then the Conway polynomial and skein theory. This paves the way for later discussion of the recently discovered Jones and generalized polynomials. The central chapter, Chapter Six, is a miscellany of topics and recreations. Here the reader will find the quaternions and the belt trick, a devilish rope trick, Alhambra mosaics, Fibonacci trees, the topology of DNA, and the author's geometric interpretation of the generalized Jones Polynomial. Then come branched covering spaces, the Alexander polynomial, signature theorems, the work of Casson and Gordon on slice knots, and a chapter on knots and algebraic singularities.The book concludes with an appendix about generalized polynomials.
Publisher: Princeton University Press
ISBN: 9780691084350
Category : Mathematics
Languages : en
Pages : 500
Book Description
On Knots is a journey through the theory of knots, starting from the simplest combinatorial ideas--ideas arising from the representation of weaving patterns. From this beginning, topological invariants are constructed directly: first linking numbers, then the Conway polynomial and skein theory. This paves the way for later discussion of the recently discovered Jones and generalized polynomials. The central chapter, Chapter Six, is a miscellany of topics and recreations. Here the reader will find the quaternions and the belt trick, a devilish rope trick, Alhambra mosaics, Fibonacci trees, the topology of DNA, and the author's geometric interpretation of the generalized Jones Polynomial. Then come branched covering spaces, the Alexander polynomial, signature theorems, the work of Casson and Gordon on slice knots, and a chapter on knots and algebraic singularities.The book concludes with an appendix about generalized polynomials.
New Developments in the Theory of Knots
Author: Toshitake Kohno
Publisher: World Scientific
ISBN: 9789810201623
Category : Mathematics
Languages : en
Pages : 924
Book Description
This reprint volume focuses on recent developments in knot theory arising from mathematical physics, especially solvable lattice models, Yang-Baxter equation, quantum group and two dimensional conformal field theory. This volume is helpful to topologists and mathematical physicists because existing articles are scattered in journals of many different domains including Mathematics and Physics. This volume will give an excellent perspective on these new developments in Topology inspired by mathematical physics.
Publisher: World Scientific
ISBN: 9789810201623
Category : Mathematics
Languages : en
Pages : 924
Book Description
This reprint volume focuses on recent developments in knot theory arising from mathematical physics, especially solvable lattice models, Yang-Baxter equation, quantum group and two dimensional conformal field theory. This volume is helpful to topologists and mathematical physicists because existing articles are scattered in journals of many different domains including Mathematics and Physics. This volume will give an excellent perspective on these new developments in Topology inspired by mathematical physics.
Tying Light in Knots
Author: David S Simon
Publisher: Morgan & Claypool Publishers
ISBN: 1643272349
Category : Science
Languages : en
Pages : 130
Book Description
Topology is the study of properties of geometrical objects that remain invariant as the object is bent, twisted, or otherwise continuously deformed. It has been an indispensable tool in particle physics and solid state physics for decades, but in recent years it has become increasingly relevant in classical and quantum optics as well. It makes appearances through such diverse phenomena as Pancharatnam-Berry phases, optical vortices and solitons, and optical simulations of solid-state topological phenomena. This book concisely provides the necessary mathematical background needed to understand these developments and to give a rapid survey of some of the optical applications where topological issues arise.
Publisher: Morgan & Claypool Publishers
ISBN: 1643272349
Category : Science
Languages : en
Pages : 130
Book Description
Topology is the study of properties of geometrical objects that remain invariant as the object is bent, twisted, or otherwise continuously deformed. It has been an indispensable tool in particle physics and solid state physics for decades, but in recent years it has become increasingly relevant in classical and quantum optics as well. It makes appearances through such diverse phenomena as Pancharatnam-Berry phases, optical vortices and solitons, and optical simulations of solid-state topological phenomena. This book concisely provides the necessary mathematical background needed to understand these developments and to give a rapid survey of some of the optical applications where topological issues arise.