Author: Gábor Bakos
Publisher: Packt Publishing Ltd
ISBN: 1849699224
Category : Computers
Languages : en
Pages : 219
Book Description
KNIME Essentials is a practical guide aimed at getting the results you want, as quickly as possible."Knime Essentials" is written for data analysts looking to quickly get up to speed using the market leader in data processing tools, KNIME. No knowledge of KNIME is required, but we will assume that you have some background in data processing.
KNIME Essentials
Author: Gábor Bakos
Publisher: Packt Publishing Ltd
ISBN: 1849699224
Category : Computers
Languages : en
Pages : 219
Book Description
KNIME Essentials is a practical guide aimed at getting the results you want, as quickly as possible."Knime Essentials" is written for data analysts looking to quickly get up to speed using the market leader in data processing tools, KNIME. No knowledge of KNIME is required, but we will assume that you have some background in data processing.
Publisher: Packt Publishing Ltd
ISBN: 1849699224
Category : Computers
Languages : en
Pages : 219
Book Description
KNIME Essentials is a practical guide aimed at getting the results you want, as quickly as possible."Knime Essentials" is written for data analysts looking to quickly get up to speed using the market leader in data processing tools, KNIME. No knowledge of KNIME is required, but we will assume that you have some background in data processing.
Codeless Deep Learning with KNIME
Author: Kathrin Melcher
Publisher: Packt Publishing Ltd
ISBN: 180056242X
Category : Computers
Languages : en
Pages : 385
Book Description
Discover how to integrate KNIME Analytics Platform with deep learning libraries to implement artificial intelligence solutions Key FeaturesBecome well-versed with KNIME Analytics Platform to perform codeless deep learningDesign and build deep learning workflows quickly and more easily using the KNIME GUIDiscover different deployment options without using a single line of code with KNIME Analytics PlatformBook Description KNIME Analytics Platform is an open source software used to create and design data science workflows. This book is a comprehensive guide to the KNIME GUI and KNIME deep learning integration, helping you build neural network models without writing any code. It’ll guide you in building simple and complex neural networks through practical and creative solutions for solving real-world data problems. Starting with an introduction to KNIME Analytics Platform, you’ll get an overview of simple feed-forward networks for solving simple classification problems on relatively small datasets. You’ll then move on to build, train, test, and deploy more complex networks, such as autoencoders, recurrent neural networks (RNNs), long short-term memory (LSTM), and convolutional neural networks (CNNs). In each chapter, depending on the network and use case, you’ll learn how to prepare data, encode incoming data, and apply best practices. By the end of this book, you’ll have learned how to design a variety of different neural architectures and will be able to train, test, and deploy the final network. What you will learnUse various common nodes to transform your data into the right structure suitable for training a neural networkUnderstand neural network techniques such as loss functions, backpropagation, and hyperparametersPrepare and encode data appropriately to feed it into the networkBuild and train a classic feedforward networkDevelop and optimize an autoencoder network for outlier detectionImplement deep learning networks such as CNNs, RNNs, and LSTM with the help of practical examplesDeploy a trained deep learning network on real-world dataWho this book is for This book is for data analysts, data scientists, and deep learning developers who are not well-versed in Python but want to learn how to use KNIME GUI to build, train, test, and deploy neural networks with different architectures. The practical implementations shown in the book do not require coding or any knowledge of dedicated scripts, so you can easily implement your knowledge into practical applications. No prior experience of using KNIME is required to get started with this book.
Publisher: Packt Publishing Ltd
ISBN: 180056242X
Category : Computers
Languages : en
Pages : 385
Book Description
Discover how to integrate KNIME Analytics Platform with deep learning libraries to implement artificial intelligence solutions Key FeaturesBecome well-versed with KNIME Analytics Platform to perform codeless deep learningDesign and build deep learning workflows quickly and more easily using the KNIME GUIDiscover different deployment options without using a single line of code with KNIME Analytics PlatformBook Description KNIME Analytics Platform is an open source software used to create and design data science workflows. This book is a comprehensive guide to the KNIME GUI and KNIME deep learning integration, helping you build neural network models without writing any code. It’ll guide you in building simple and complex neural networks through practical and creative solutions for solving real-world data problems. Starting with an introduction to KNIME Analytics Platform, you’ll get an overview of simple feed-forward networks for solving simple classification problems on relatively small datasets. You’ll then move on to build, train, test, and deploy more complex networks, such as autoencoders, recurrent neural networks (RNNs), long short-term memory (LSTM), and convolutional neural networks (CNNs). In each chapter, depending on the network and use case, you’ll learn how to prepare data, encode incoming data, and apply best practices. By the end of this book, you’ll have learned how to design a variety of different neural architectures and will be able to train, test, and deploy the final network. What you will learnUse various common nodes to transform your data into the right structure suitable for training a neural networkUnderstand neural network techniques such as loss functions, backpropagation, and hyperparametersPrepare and encode data appropriately to feed it into the networkBuild and train a classic feedforward networkDevelop and optimize an autoencoder network for outlier detectionImplement deep learning networks such as CNNs, RNNs, and LSTM with the help of practical examplesDeploy a trained deep learning network on real-world dataWho this book is for This book is for data analysts, data scientists, and deep learning developers who are not well-versed in Python but want to learn how to use KNIME GUI to build, train, test, and deploy neural networks with different architectures. The practical implementations shown in the book do not require coding or any knowledge of dedicated scripts, so you can easily implement your knowledge into practical applications. No prior experience of using KNIME is required to get started with this book.
Integration of Data Mining in Business Intelligence Systems
Author: Azevedo, Ana
Publisher: IGI Global
ISBN: 1466664789
Category : Computers
Languages : en
Pages : 340
Book Description
Uncovering and analyzing data associated with the current business environment is essential in maintaining a competitive edge. As such, making informed decisions based on this data is crucial to managers across industries. Integration of Data Mining in Business Intelligence Systems investigates the incorporation of data mining into business technologies used in the decision making process. Emphasizing cutting-edge research and relevant concepts in data discovery and analysis, this book is a comprehensive reference source for policymakers, academicians, researchers, students, technology developers, and professionals interested in the application of data mining techniques and practices in business information systems.
Publisher: IGI Global
ISBN: 1466664789
Category : Computers
Languages : en
Pages : 340
Book Description
Uncovering and analyzing data associated with the current business environment is essential in maintaining a competitive edge. As such, making informed decisions based on this data is crucial to managers across industries. Integration of Data Mining in Business Intelligence Systems investigates the incorporation of data mining into business technologies used in the decision making process. Emphasizing cutting-edge research and relevant concepts in data discovery and analysis, this book is a comprehensive reference source for policymakers, academicians, researchers, students, technology developers, and professionals interested in the application of data mining techniques and practices in business information systems.
Data Analytics Essentials You Always Wanted To Know
Author: Vibrant Publishers
Publisher: Vibrant Publishers
ISBN: 1636511198
Category : Business & Economics
Languages : en
Pages : 170
Book Description
Upon reading this book, you will get: A fundamental comprehension of data analytics, including its types An understanding of data analytics processes, software tools, and a range of analytics methodologies A comprehension of what daily tasks and procedures the data analysts follow An investigation into the vast field of big data analytics, covering its possibilities and challenges An understanding of the existing legal frameworks, as well as ethical and privacy issues in data analytics Application-based learning using a variety of real-world case studies From raw data to actionable insights - journey through the essentials of data analytics. Data Analytics Essentials You Always Wanted To Know is an approachable and captivating guide to understand the complicated world of data Data analytics is becoming increasingly important in today's data-driven society, and so has the demand for data analysts. Data Analytics Essentials You Always Wanted to Know (Data Analytics Essentials) is a comprehensive yet succinct manual, perfect for you if you are trying to understand the fundamentals of data analytics. It gives a concise introduction to data analytics and its current applicability. This book is a great tool for professionals switching to a career in data analytics and for students who want to learn the basics of data analytics. It will give you a strong foundation by explaining everything in an easy-to-understand language. Data Analytics Essentials goes beyond a theoretical manual and contains real-world case studies and fun facts to help you enhance your knowledge. The chapter summaries and self- assessment tests along with every chapter will help you test yourself as you move from one concept to the next.
Publisher: Vibrant Publishers
ISBN: 1636511198
Category : Business & Economics
Languages : en
Pages : 170
Book Description
Upon reading this book, you will get: A fundamental comprehension of data analytics, including its types An understanding of data analytics processes, software tools, and a range of analytics methodologies A comprehension of what daily tasks and procedures the data analysts follow An investigation into the vast field of big data analytics, covering its possibilities and challenges An understanding of the existing legal frameworks, as well as ethical and privacy issues in data analytics Application-based learning using a variety of real-world case studies From raw data to actionable insights - journey through the essentials of data analytics. Data Analytics Essentials You Always Wanted To Know is an approachable and captivating guide to understand the complicated world of data Data analytics is becoming increasingly important in today's data-driven society, and so has the demand for data analysts. Data Analytics Essentials You Always Wanted to Know (Data Analytics Essentials) is a comprehensive yet succinct manual, perfect for you if you are trying to understand the fundamentals of data analytics. It gives a concise introduction to data analytics and its current applicability. This book is a great tool for professionals switching to a career in data analytics and for students who want to learn the basics of data analytics. It will give you a strong foundation by explaining everything in an easy-to-understand language. Data Analytics Essentials goes beyond a theoretical manual and contains real-world case studies and fun facts to help you enhance your knowledge. The chapter summaries and self- assessment tests along with every chapter will help you test yourself as you move from one concept to the next.
Data Science Tools
Author: Christopher Greco
Publisher: Mercury Learning and Information
ISBN: 1683925823
Category : Computers
Languages : en
Pages : 353
Book Description
In the world of data science there are myriad tools available to analyze data. This book describes some of the popular software application tools along with the processes for downloading and using them in the most optimum fashion. The content includes data analysis using Microsoft Excel, KNIME, R, and OpenOffice (Spreadsheet). Each of these tools will be used to apply statistical concepts including confidence intervals, normal distribution, T-Tests, linear regression, histograms, and geographic analysis using real data from Federal Government sources. Features: Analyzes data using popular applications such as Excel, R, KNIME, and OpenOffice Covers statistical concepts including confidence intervals, normal distribution, T-Tests, linear regression, histograms, and geographic analysis Capstone exercises analyze data using the different software packages
Publisher: Mercury Learning and Information
ISBN: 1683925823
Category : Computers
Languages : en
Pages : 353
Book Description
In the world of data science there are myriad tools available to analyze data. This book describes some of the popular software application tools along with the processes for downloading and using them in the most optimum fashion. The content includes data analysis using Microsoft Excel, KNIME, R, and OpenOffice (Spreadsheet). Each of these tools will be used to apply statistical concepts including confidence intervals, normal distribution, T-Tests, linear regression, histograms, and geographic analysis using real data from Federal Government sources. Features: Analyzes data using popular applications such as Excel, R, KNIME, and OpenOffice Covers statistical concepts including confidence intervals, normal distribution, T-Tests, linear regression, histograms, and geographic analysis Capstone exercises analyze data using the different software packages
Data Analysis, Machine Learning and Applications
Author: Christine Preisach
Publisher: Springer Science & Business Media
ISBN: 354078246X
Category : Computers
Languages : en
Pages : 714
Book Description
Data analysis and machine learning are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medical science, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and applications presented during the 31st Annual Conference of the German Classification Society (Gesellschaft für Klassifikation - GfKl). The conference was held at the Albert-Ludwigs-University in Freiburg, Germany, in March 2007.
Publisher: Springer Science & Business Media
ISBN: 354078246X
Category : Computers
Languages : en
Pages : 714
Book Description
Data analysis and machine learning are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medical science, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and applications presented during the 31st Annual Conference of the German Classification Society (Gesellschaft für Klassifikation - GfKl). The conference was held at the Albert-Ludwigs-University in Freiburg, Germany, in March 2007.
Computational Intelligence Paradigms in Economic and Financial Decision Making
Author: Marina Resta
Publisher: Springer
ISBN: 3319214403
Category : Technology & Engineering
Languages : en
Pages : 183
Book Description
The book focuses on a set of cutting-edge research techniques, highlighting the potential of soft computing tools in the analysis of economic and financial phenomena and in providing support for the decision-making process. In the first part the textbook presents a comprehensive and self-contained introduction to the field of self-organizing maps, elastic maps and social network analysis tools and provides necessary background material on the topic, including a discussion of more recent developments in the field. In the second part the focus is on practical applications, with particular attention paid to budgeting problems, market simulations, and decision-making processes, and on how such problems can be effectively managed by developing proper methods to automatically detect certain patterns. The book offers a valuable resource for both students and practitioners with an introductory-level college math background.
Publisher: Springer
ISBN: 3319214403
Category : Technology & Engineering
Languages : en
Pages : 183
Book Description
The book focuses on a set of cutting-edge research techniques, highlighting the potential of soft computing tools in the analysis of economic and financial phenomena and in providing support for the decision-making process. In the first part the textbook presents a comprehensive and self-contained introduction to the field of self-organizing maps, elastic maps and social network analysis tools and provides necessary background material on the topic, including a discussion of more recent developments in the field. In the second part the focus is on practical applications, with particular attention paid to budgeting problems, market simulations, and decision-making processes, and on how such problems can be effectively managed by developing proper methods to automatically detect certain patterns. The book offers a valuable resource for both students and practitioners with an introductory-level college math background.
Guide to Intelligent Data Science
Author: Michael R. Berthold
Publisher: Springer Nature
ISBN: 3030455742
Category : Computers
Languages : en
Pages : 427
Book Description
Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results. Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included. Topics and features: guides the reader through the process of data science, following the interdependent steps of project understanding, data understanding, data blending and transformation, modeling, as well as deployment and monitoring; includes numerous examples using the open source KNIME Analytics Platform, together with an introductory appendix; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; integrates illustrations and case-study-style examples to support pedagogical exposition; supplies further tools and information at an associated website. This practical and systematic textbook/reference is a “need-to-have” tool for graduate and advanced undergraduate students and essential reading for all professionals who face data science problems. Moreover, it is a “need to use, need to keep” resource following one's exploration of the subject.
Publisher: Springer Nature
ISBN: 3030455742
Category : Computers
Languages : en
Pages : 427
Book Description
Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results. Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included. Topics and features: guides the reader through the process of data science, following the interdependent steps of project understanding, data understanding, data blending and transformation, modeling, as well as deployment and monitoring; includes numerous examples using the open source KNIME Analytics Platform, together with an introductory appendix; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; integrates illustrations and case-study-style examples to support pedagogical exposition; supplies further tools and information at an associated website. This practical and systematic textbook/reference is a “need-to-have” tool for graduate and advanced undergraduate students and essential reading for all professionals who face data science problems. Moreover, it is a “need to use, need to keep” resource following one's exploration of the subject.
Flavoromics
Author: Leo Nollet
Publisher: CRC Press
ISBN: 1003816010
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
Forty years of progress in the fields of gas chromatography and data collection have culminated in flavoromics. This is a combination of chemometrics and metabolomics. Essentially, it is the non-targeted way of rapidly collecting a significant amount of data from a wide range of sample populations and using the data to study complicated topics. Now that we have the required tools, we can carry out high-throughput trace investigations that incorporate both gustatory and olfactory signals. Flavoromics: An Integrated Approach to Flavor and Sensory Assessment describes the tools to do high-throughput, trace analyses that represent both taste and olfaction stimuli. It explains how today's single sample research will generate thousands of data points, which are loaded into sophisticated statistical analysis algorithms to establish what stimuli are responsible for flavor. This cutting-edge equipment will enable us to create flavorings and perfumes that are more realistic and superior. Key Features: Includes a detailed section on data handling/mining Section 4 describes a broad overview of different food matrices Points out the integration of flavoromics with advanced separation methods, data management, statistical modeling, and variable selection This book represents a revolutionary tool waiting to help make better, truer to life flavorings and fragrances.
Publisher: CRC Press
ISBN: 1003816010
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
Forty years of progress in the fields of gas chromatography and data collection have culminated in flavoromics. This is a combination of chemometrics and metabolomics. Essentially, it is the non-targeted way of rapidly collecting a significant amount of data from a wide range of sample populations and using the data to study complicated topics. Now that we have the required tools, we can carry out high-throughput trace investigations that incorporate both gustatory and olfactory signals. Flavoromics: An Integrated Approach to Flavor and Sensory Assessment describes the tools to do high-throughput, trace analyses that represent both taste and olfaction stimuli. It explains how today's single sample research will generate thousands of data points, which are loaded into sophisticated statistical analysis algorithms to establish what stimuli are responsible for flavor. This cutting-edge equipment will enable us to create flavorings and perfumes that are more realistic and superior. Key Features: Includes a detailed section on data handling/mining Section 4 describes a broad overview of different food matrices Points out the integration of flavoromics with advanced separation methods, data management, statistical modeling, and variable selection This book represents a revolutionary tool waiting to help make better, truer to life flavorings and fragrances.
From Data to Discovery: The Essential Guide to Big Data Analytics
Author: Dr.J.Premalatha
Publisher: SK Research Group of Companies
ISBN: 8119980808
Category : Language Arts & Disciplines
Languages : en
Pages : 261
Book Description
Dr.J.Premalatha, Vice Principal, Dhanalakshmi Srinivasan Arts and Science(Co-Ed) College, Mamallapuram, Chennai, Tamil Nadu, India. Dr.K.Kalaiselvi, Professor, Department of Data Analytics, Saveetha College of Liberal Arts and Sciences, SIMATS, Chennai, Tamil Nadu, India. Dr.A.Senthilkumar, Assistant Professor, Department of Computer Science with Data Analytics, Sri Ramakrishna College of Arts & Science, Coimbatore, Tamil Nadu, India.
Publisher: SK Research Group of Companies
ISBN: 8119980808
Category : Language Arts & Disciplines
Languages : en
Pages : 261
Book Description
Dr.J.Premalatha, Vice Principal, Dhanalakshmi Srinivasan Arts and Science(Co-Ed) College, Mamallapuram, Chennai, Tamil Nadu, India. Dr.K.Kalaiselvi, Professor, Department of Data Analytics, Saveetha College of Liberal Arts and Sciences, SIMATS, Chennai, Tamil Nadu, India. Dr.A.Senthilkumar, Assistant Professor, Department of Computer Science with Data Analytics, Sri Ramakrishna College of Arts & Science, Coimbatore, Tamil Nadu, India.