Author: Bernard Maskit
Publisher: Springer Science & Business Media
ISBN: 3642615902
Category : Mathematics
Languages : en
Pages : 339
Book Description
The modern theory of Kleinian groups starts with the work of Lars Ahlfors and Lipman Bers; specifically with Ahlfors' finiteness theorem, and Bers' observation that their joint work on the Beltrami equation has deep implications for the theory of Kleinian groups and their deformations. From the point of view of uniformizations of Riemann surfaces, Bers' observation has the consequence that the question of understanding the different uniformizations of a finite Riemann surface poses a purely topological problem; it is independent of the conformal structure on the surface. The last two chapters here give a topological description of the set of all (geometrically finite) uniformizations of finite Riemann surfaces. We carefully skirt Ahlfors' finiteness theorem. For groups which uniformize a finite Riemann surface; that is, groups with an invariant component, one can either start with the assumption that the group is finitely generated, and then use the finiteness theorem to conclude that the group represents only finitely many finite Riemann surfaces, or, as we do here, one can start with the assumption that, in the invariant component, the group represents a finite Riemann surface, and then, using essentially topological techniques, reach the same conclusion. More recently, Bill Thurston wrought a revolution in the field by showing that one could analyze Kleinian groups using 3-dimensional hyperbolic geome try, and there is now an active school of research using these methods.
Kleinian Groups
Author: Bernard Maskit
Publisher: Springer Science & Business Media
ISBN: 3642615902
Category : Mathematics
Languages : en
Pages : 339
Book Description
The modern theory of Kleinian groups starts with the work of Lars Ahlfors and Lipman Bers; specifically with Ahlfors' finiteness theorem, and Bers' observation that their joint work on the Beltrami equation has deep implications for the theory of Kleinian groups and their deformations. From the point of view of uniformizations of Riemann surfaces, Bers' observation has the consequence that the question of understanding the different uniformizations of a finite Riemann surface poses a purely topological problem; it is independent of the conformal structure on the surface. The last two chapters here give a topological description of the set of all (geometrically finite) uniformizations of finite Riemann surfaces. We carefully skirt Ahlfors' finiteness theorem. For groups which uniformize a finite Riemann surface; that is, groups with an invariant component, one can either start with the assumption that the group is finitely generated, and then use the finiteness theorem to conclude that the group represents only finitely many finite Riemann surfaces, or, as we do here, one can start with the assumption that, in the invariant component, the group represents a finite Riemann surface, and then, using essentially topological techniques, reach the same conclusion. More recently, Bill Thurston wrought a revolution in the field by showing that one could analyze Kleinian groups using 3-dimensional hyperbolic geome try, and there is now an active school of research using these methods.
Publisher: Springer Science & Business Media
ISBN: 3642615902
Category : Mathematics
Languages : en
Pages : 339
Book Description
The modern theory of Kleinian groups starts with the work of Lars Ahlfors and Lipman Bers; specifically with Ahlfors' finiteness theorem, and Bers' observation that their joint work on the Beltrami equation has deep implications for the theory of Kleinian groups and their deformations. From the point of view of uniformizations of Riemann surfaces, Bers' observation has the consequence that the question of understanding the different uniformizations of a finite Riemann surface poses a purely topological problem; it is independent of the conformal structure on the surface. The last two chapters here give a topological description of the set of all (geometrically finite) uniformizations of finite Riemann surfaces. We carefully skirt Ahlfors' finiteness theorem. For groups which uniformize a finite Riemann surface; that is, groups with an invariant component, one can either start with the assumption that the group is finitely generated, and then use the finiteness theorem to conclude that the group represents only finitely many finite Riemann surfaces, or, as we do here, one can start with the assumption that, in the invariant component, the group represents a finite Riemann surface, and then, using essentially topological techniques, reach the same conclusion. More recently, Bill Thurston wrought a revolution in the field by showing that one could analyze Kleinian groups using 3-dimensional hyperbolic geome try, and there is now an active school of research using these methods.
Complex Kleinian Groups
Author: Angel Cano
Publisher: Springer Science & Business Media
ISBN: 3034804814
Category : Mathematics
Languages : en
Pages : 288
Book Description
This monograph lays down the foundations of the theory of complex Kleinian groups, a newly born area of mathematics whose origin traces back to the work of Riemann, Poincaré, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP1. When going into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere?, or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories are different in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition. In the second case we are talking about an area of mathematics that still is in its childhood, and this is the focus of study in this monograph. This brings together several important areas of mathematics, as for instance classical Kleinian group actions, complex hyperbolic geometry, chrystallographic groups and the uniformization problem for complex manifolds.
Publisher: Springer Science & Business Media
ISBN: 3034804814
Category : Mathematics
Languages : en
Pages : 288
Book Description
This monograph lays down the foundations of the theory of complex Kleinian groups, a newly born area of mathematics whose origin traces back to the work of Riemann, Poincaré, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP1. When going into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere?, or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories are different in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition. In the second case we are talking about an area of mathematics that still is in its childhood, and this is the focus of study in this monograph. This brings together several important areas of mathematics, as for instance classical Kleinian group actions, complex hyperbolic geometry, chrystallographic groups and the uniformization problem for complex manifolds.
Kleinian Groups and Uniformization in Examples and Problems
Author: Samuil Leĭbovich Krushkalʹ
Publisher: American Mathematical Soc.
ISBN: 0821845160
Category : Mathematics
Languages : en
Pages : 212
Book Description
Presents a unified exposition of the main areas and methods of the theory of Kleinian groups and the theory of uniformization of manifolds. This book lists the basic facts regarding Kleinian groups and serves as a general guide to the primary literature, particularly the Russian literature in the field.
Publisher: American Mathematical Soc.
ISBN: 0821845160
Category : Mathematics
Languages : en
Pages : 212
Book Description
Presents a unified exposition of the main areas and methods of the theory of Kleinian groups and the theory of uniformization of manifolds. This book lists the basic facts regarding Kleinian groups and serves as a general guide to the primary literature, particularly the Russian literature in the field.
Hyperbolic Manifolds and Kleinian Groups
Author: Katsuhiko Matsuzaki
Publisher: Clarendon Press
ISBN: 0191591203
Category : Mathematics
Languages : en
Pages : 265
Book Description
A Kleinian group is a discrete subgroup of the isometry group of hyperbolic 3-space, which is also regarded as a subgroup of Möbius transformations in the complex plane. The present book is a comprehensive guide to theories of Kleinian groups from the viewpoints of hyperbolic geometry and complex analysis. After 1960, Ahlfors and Bers were the leading researchers of Kleinian groups and helped it to become an active area of complex analysis as a branch of Teichmüller theory. Later, Thurston brought a revolution to this area with his profound investigation of hyperbolic manifolds, and at the same time complex dynamical approach was strongly developed by Sullivan. This book provides fundamental results and important theorems which are needed for access to the frontiers of the theory from a modern viewpoint.
Publisher: Clarendon Press
ISBN: 0191591203
Category : Mathematics
Languages : en
Pages : 265
Book Description
A Kleinian group is a discrete subgroup of the isometry group of hyperbolic 3-space, which is also regarded as a subgroup of Möbius transformations in the complex plane. The present book is a comprehensive guide to theories of Kleinian groups from the viewpoints of hyperbolic geometry and complex analysis. After 1960, Ahlfors and Bers were the leading researchers of Kleinian groups and helped it to become an active area of complex analysis as a branch of Teichmüller theory. Later, Thurston brought a revolution to this area with his profound investigation of hyperbolic manifolds, and at the same time complex dynamical approach was strongly developed by Sullivan. This book provides fundamental results and important theorems which are needed for access to the frontiers of the theory from a modern viewpoint.
Kleinian Groups which Are Limits of Geometrically Finite Groups
Author: Ken'ichi Ōshika
Publisher: American Mathematical Soc.
ISBN: 0821837729
Category : Mathematics
Languages : en
Pages : 136
Book Description
Ahlfors conjectured in 1964 that the limit set of every finitely generated Kleinian group either has Lebesgue measure $0$ or is the entire $S^2$. This title intends to prove that this conjecture is true for purely loxodromic Kleinian groups which are algebraic limits of geometrically finite groups.
Publisher: American Mathematical Soc.
ISBN: 0821837729
Category : Mathematics
Languages : en
Pages : 136
Book Description
Ahlfors conjectured in 1964 that the limit set of every finitely generated Kleinian group either has Lebesgue measure $0$ or is the entire $S^2$. This title intends to prove that this conjecture is true for purely loxodromic Kleinian groups which are algebraic limits of geometrically finite groups.
Geometry and Dynamics of Groups and Spaces
Author: Mikhail Kapranov
Publisher: Springer Science & Business Media
ISBN: 3764386088
Category : Mathematics
Languages : en
Pages : 759
Book Description
Alexander Reznikov (1960-2003) was a brilliant and highly original mathematician. This book presents 18 articles by prominent mathematicians and is dedicated to his memory. In addition it contains an influential, so far unpublished manuscript by Reznikov of book length. The book further provides an extensive survey on Kleinian groups in higher dimensions and some articles centering on Reznikov as a person.
Publisher: Springer Science & Business Media
ISBN: 3764386088
Category : Mathematics
Languages : en
Pages : 759
Book Description
Alexander Reznikov (1960-2003) was a brilliant and highly original mathematician. This book presents 18 articles by prominent mathematicians and is dedicated to his memory. In addition it contains an influential, so far unpublished manuscript by Reznikov of book length. The book further provides an extensive survey on Kleinian groups in higher dimensions and some articles centering on Reznikov as a person.
Discrete Groups
Author: Kenʼichi Ōshika
Publisher: American Mathematical Soc.
ISBN: 9780821820803
Category : Mathematics
Languages : en
Pages : 212
Book Description
This book deals with geometric and topological aspects of discrete groups. The main topics are hyperbolic groups due to Gromov, automatic group theory, invented and developed by Epstein, whose subjects are groups that can be manipulated by computers, and Kleinian group theory, which enjoys the longest tradition and the richest contents within the theory of discrete subgroups of Lie groups. What is common among these three classes of groups is that when seen as geometric objects, they have the properties of a negatively curved space rather than a positively curved space. As Kleinian groups are groups acting on a hyperbolic space of constant negative curvature, the technique employed to study them is that of hyperbolic manifolds, typical examples of negatively curved manifolds. Although hyperbolic groups in the sense of Gromov are much more general objects than Kleinian groups, one can apply for them arguments and techniques that are quite similar to those used for Kleinian groups. Automatic groups are further general objects, including groups having properties of spaces of curvature 0. Still, relationships between automatic groups and hyperbolic groups are examined here using ideas inspired by the study of hyperbolic manifolds. In all of these three topics, there is a ``soul'' of negative curvature upholding the theory. The volume would make a fine textbook for a graduate-level course
Publisher: American Mathematical Soc.
ISBN: 9780821820803
Category : Mathematics
Languages : en
Pages : 212
Book Description
This book deals with geometric and topological aspects of discrete groups. The main topics are hyperbolic groups due to Gromov, automatic group theory, invented and developed by Epstein, whose subjects are groups that can be manipulated by computers, and Kleinian group theory, which enjoys the longest tradition and the richest contents within the theory of discrete subgroups of Lie groups. What is common among these three classes of groups is that when seen as geometric objects, they have the properties of a negatively curved space rather than a positively curved space. As Kleinian groups are groups acting on a hyperbolic space of constant negative curvature, the technique employed to study them is that of hyperbolic manifolds, typical examples of negatively curved manifolds. Although hyperbolic groups in the sense of Gromov are much more general objects than Kleinian groups, one can apply for them arguments and techniques that are quite similar to those used for Kleinian groups. Automatic groups are further general objects, including groups having properties of spaces of curvature 0. Still, relationships between automatic groups and hyperbolic groups are examined here using ideas inspired by the study of hyperbolic manifolds. In all of these three topics, there is a ``soul'' of negative curvature upholding the theory. The volume would make a fine textbook for a graduate-level course
Indra's Pearls
Author: David Mumford
Publisher: Cambridge University Press
ISBN: 9780521352536
Category : Computers
Languages : en
Pages : 422
Book Description
Felix Klein, one of the great nineteenth-century geometers, rediscovered in mathematics an idea from Eastern philosophy: the heaven of Indra contained a net of pearls, each of which was reflected in its neighbour, so that the whole Universe was mirrored in each pearl. Klein studied infinitely repeated reflections and was led to forms with multiple co-existing symmetries. For a century these ideas barely existed outside the imagination of mathematicians. However in the 1980s the authors embarked on the first computer exploration of Klein's vision, and in doing so found many further extraordinary images. Join the authors on the path from basic mathematical ideas to the simple algorithms that create the delicate fractal filigrees, most of which have never appeared in print before. Beginners can follow the step-by-step instructions for writing programs that generate the images. Others can see how the images relate to ideas at the forefront of research.
Publisher: Cambridge University Press
ISBN: 9780521352536
Category : Computers
Languages : en
Pages : 422
Book Description
Felix Klein, one of the great nineteenth-century geometers, rediscovered in mathematics an idea from Eastern philosophy: the heaven of Indra contained a net of pearls, each of which was reflected in its neighbour, so that the whole Universe was mirrored in each pearl. Klein studied infinitely repeated reflections and was led to forms with multiple co-existing symmetries. For a century these ideas barely existed outside the imagination of mathematicians. However in the 1980s the authors embarked on the first computer exploration of Klein's vision, and in doing so found many further extraordinary images. Join the authors on the path from basic mathematical ideas to the simple algorithms that create the delicate fractal filigrees, most of which have never appeared in print before. Beginners can follow the step-by-step instructions for writing programs that generate the images. Others can see how the images relate to ideas at the forefront of research.
Outer Circles
Author: A. Marden
Publisher: Cambridge University Press
ISBN: 1139463764
Category : Mathematics
Languages : en
Pages : 393
Book Description
We live in a three-dimensional space; what sort of space is it? Can we build it from simple geometric objects? The answers to such questions have been found in the last 30 years, and Outer Circles describes the basic mathematics needed for those answers as well as making clear the grand design of the subject of hyperbolic manifolds as a whole. The purpose of Outer Circles is to provide an account of the contemporary theory, accessible to those with minimal formal background in topology, hyperbolic geometry, and complex analysis. The text explains what is needed, and provides the expertise to use the primary tools to arrive at a thorough understanding of the big picture. This picture is further filled out by numerous exercises and expositions at the ends of the chapters and is complemented by a profusion of high quality illustrations. There is an extensive bibliography for further study.
Publisher: Cambridge University Press
ISBN: 1139463764
Category : Mathematics
Languages : en
Pages : 393
Book Description
We live in a three-dimensional space; what sort of space is it? Can we build it from simple geometric objects? The answers to such questions have been found in the last 30 years, and Outer Circles describes the basic mathematics needed for those answers as well as making clear the grand design of the subject of hyperbolic manifolds as a whole. The purpose of Outer Circles is to provide an account of the contemporary theory, accessible to those with minimal formal background in topology, hyperbolic geometry, and complex analysis. The text explains what is needed, and provides the expertise to use the primary tools to arrive at a thorough understanding of the big picture. This picture is further filled out by numerous exercises and expositions at the ends of the chapters and is complemented by a profusion of high quality illustrations. There is an extensive bibliography for further study.
Geometry of Group Representations
Author: William Mark Goldman
Publisher: American Mathematical Soc.
ISBN: 0821850822
Category : Mathematics
Languages : en
Pages : 330
Book Description
Contains papers based on talks delivered at the AMS-IMS-SIAM Summer Research Conference on the Geometry of Group Representations, held at the University of Colorado in Boulder in July 1987. This work offers an understanding of the state of research in the geometry of group representations and their applications.
Publisher: American Mathematical Soc.
ISBN: 0821850822
Category : Mathematics
Languages : en
Pages : 330
Book Description
Contains papers based on talks delivered at the AMS-IMS-SIAM Summer Research Conference on the Geometry of Group Representations, held at the University of Colorado in Boulder in July 1987. This work offers an understanding of the state of research in the geometry of group representations and their applications.