Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials, Volume 151

Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials, Volume 151 PDF Author: Gregoire Nicolis
Publisher: John Wiley & Sons
ISBN: 111816783X
Category : Science
Languages : en
Pages : 352

Get Book Here

Book Description
The Advances in Chemical Physics series—the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series presents contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics. This volume explores: Kinetics and thermodynamics of fluctuation-induced transitions in multistable systems (G. Nicolis and C. Nicolis) Dynamical rare event simulation techniques for equilibrium and nonequilibrium systems (Titus S. van Erp) Confocal depolarized dynamic light scattering (M. Potenza, T. Sanvito, V. Degiorgio, and M. Giglio) The two-step mechanism and the solution-crystal spinodal for nucleation of crystals in solution (Peter G. Vekilov) Experimental studies of two-step nucleation during two-dimensional crystallization of colloidal particles with short-range attraction (John R. Savage, Liquan Pei, and Anthony D. Dinsmore) On the role of metastable intermediate states in the homogeneous nucleation of solids from solution (James F. Lutsko) Effects of protein size on the high-concentration/low-concentration phase transition (Patrick Grosfils) Geometric constraints in the self-assembly of mineral dendrites and platelets (John J. Kozak) What can mesoscopic level in situ observations teach us about kinetics and thermodynamics of protein crystallization? (Mike Sleutel, Dominique Maes, and Alexander Van Driessche) The ability of silica to induce biomimetic crystallization of calcium carbonate (Matthias Kellermeier, Emilio Melero-GarcÍa, Werner Kunz, and Juan Manuel GarcÍa-Ruiz)

Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials, Volume 151

Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials, Volume 151 PDF Author: Gregoire Nicolis
Publisher: John Wiley & Sons
ISBN: 111816783X
Category : Science
Languages : en
Pages : 352

Get Book Here

Book Description
The Advances in Chemical Physics series—the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series presents contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics. This volume explores: Kinetics and thermodynamics of fluctuation-induced transitions in multistable systems (G. Nicolis and C. Nicolis) Dynamical rare event simulation techniques for equilibrium and nonequilibrium systems (Titus S. van Erp) Confocal depolarized dynamic light scattering (M. Potenza, T. Sanvito, V. Degiorgio, and M. Giglio) The two-step mechanism and the solution-crystal spinodal for nucleation of crystals in solution (Peter G. Vekilov) Experimental studies of two-step nucleation during two-dimensional crystallization of colloidal particles with short-range attraction (John R. Savage, Liquan Pei, and Anthony D. Dinsmore) On the role of metastable intermediate states in the homogeneous nucleation of solids from solution (James F. Lutsko) Effects of protein size on the high-concentration/low-concentration phase transition (Patrick Grosfils) Geometric constraints in the self-assembly of mineral dendrites and platelets (John J. Kozak) What can mesoscopic level in situ observations teach us about kinetics and thermodynamics of protein crystallization? (Mike Sleutel, Dominique Maes, and Alexander Van Driessche) The ability of silica to induce biomimetic crystallization of calcium carbonate (Matthias Kellermeier, Emilio Melero-GarcÍa, Werner Kunz, and Juan Manuel GarcÍa-Ruiz)

Polymorphism in the Pharmaceutical Industry

Polymorphism in the Pharmaceutical Industry PDF Author: Rolf Hilfiker
Publisher: John Wiley & Sons
ISBN: 3527340408
Category : Science
Languages : en
Pages : 512

Get Book Here

Book Description
"Polymorphism in the Pharmaceutical Industry - Solid Form and Drug Development" highlights the relevance of polymorphism in modern pharmaceutical chemistry, with a focus on quality by design (QbD) concepts. It covers all important issues by way of case studies, ranging from properties and crystallization, via thermodynamics, analytics and theoretical modelling right up to patent issues. As such, the book underscores the importance of solid-state chemistry within chemical and pharmaceutical development. It emphasizes why solid-state issues are important, the approaches needed to avoid problems and the opportunities offered by solid-state properties. The authors include true polymorphs as well as solvates and hydrates, while providing information on physicochemical properties, crystallization thermodynamics, quantum-mechanical modelling, and up-scaling. Important analytical tools to characterize solid-state forms and to quantify mixtures are summarized, and case studies on solid-state development processes in industry are also provided. Written by acknowledged experts in the field, this is a high-quality reference for researchers, project managers and quality assurance managers in pharmaceutical, agrochemical and fine chemical companies as well as for academics and newcomers to organic solid-state chemistry.

Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes

Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes PDF Author: Adam Liwo
Publisher: Springer
ISBN: 3319958437
Category : Technology & Engineering
Languages : en
Pages : 851

Get Book Here

Book Description
This book provides a comprehensive overview of modern computer-based techniques for analyzing the structure, properties and dynamics of biomolecules and biomolecular processes. It is organized in four main parts; the first one deals with methodology of molecular simulations; the second one with applications of molecular simulations; the third one introduces bioinformatics methods and the use of experimental information in molecular simulations; the last part reports on selected applications of molecular quantum mechanics. This second edition has been thoroughly revised and updated to include the latest progresses made in the respective field of research.

Protein Crystallization under the Presence of an Electric Field Special Issue Editor Abel Moreno MDPI •

Protein Crystallization under the Presence of an Electric Field Special Issue Editor Abel Moreno MDPI • PDF Author: Abel Moreno
Publisher: MDPI
ISBN: 3038975192
Category : Electrical engineering. Electronics. Nuclear engineering
Languages : en
Pages : 91

Get Book Here

Book Description
This book is a printed edition of the Special Issue "Protein Crystallization under the Presence of an Electric Field" that was published in Crystals

Biological Crystallization

Biological Crystallization PDF Author: Jaime Gómez Morales
Publisher: MDPI
ISBN: 3039214039
Category : Science
Languages : en
Pages : 184

Get Book Here

Book Description
For at least six hundred million years, life has been a fascinating laboratory of crystallization, referred to as biomineralization. During this huge lapse of time, many organisms from diverse phyla have developed the capability to precipitate various types of minerals, exploring distinctive pathways for building sophisticated structural architectures for different purposes. The Darwinian exploration was performed by trial and error, but the success in terms of complexity and efficiency is evident. Understanding the strategies that those organisms employ for regulating the nucleation, growth, and assembly of nanocrystals to build these sophisticated devices is an intellectual challenge and a source of inspiration in fields as diverse as materials science, nanotechnology, and biomedicine. However, “Biological Crystallization” is a broader topic that includes biomineralization, but also the laboratory crystallization of biological compounds such as macromolecules, carbohydrates, or lipids, and the synthesis and fabrication of biomimetic materials by different routes. This Special Issue collects 15 contributions ranging from biological and biomimetic crystallization of calcium carbonate, calcium phosphate, and silica-carbonate self-assembled materials to the crystallization of biological macromolecules. Special attention has been paid to the fundamental phenomena of crystallization (nucleation and growth), and the applications of the crystals in biomedicine, environment, and materials science.

Structural DNA Nanotechnology

Structural DNA Nanotechnology PDF Author: Nadrian C. Seeman
Publisher: Cambridge University Press
ISBN: 0521764483
Category : Computers
Languages : en
Pages : 269

Get Book Here

Book Description
Written by the founder of the field, this is a comprehensive and accessible introduction to structural DNA nanotechnology.

Nanoscale Materials

Nanoscale Materials PDF Author: Luis M. Liz-Marzán
Publisher: Springer Science & Business Media
ISBN: 0306481081
Category : Science
Languages : en
Pages : 506

Get Book Here

Book Description
Organized nanoassemblies of inorganic nanoparticles and organic molecules are building blocks of nanodevices, whether they are designed to perform molecular level computing, sense the environment or improve the catalytic properties of a material. The key to creation of these hybrid nanostructures lies in understanding the chemistry at a fundamental level. This book serves as a reference book for researchers by providing fundamental understanding of many nanoscopic materials.

Statistical Mechanics

Statistical Mechanics PDF Author: James Sethna
Publisher: OUP Oxford
ISBN: 0191566217
Category : Science
Languages : en
Pages : 374

Get Book Here

Book Description
In each generation, scientists must redefine their fields: abstracting, simplifying and distilling the previous standard topics to make room for new advances and methods. Sethna's book takes this step for statistical mechanics - a field rooted in physics and chemistry whose ideas and methods are now central to information theory, complexity, and modern biology. Aimed at advanced undergraduates and early graduate students in all of these fields, Sethna limits his main presentation to the topics that future mathematicians and biologists, as well as physicists and chemists, will find fascinating and central to their work. The amazing breadth of the field is reflected in the author's large supply of carefully crafted exercises, each an introduction to a whole field of study: everything from chaos through information theory to life at the end of the universe.

Functional Nanomaterials

Functional Nanomaterials PDF Author: Kurt E. Geckeler
Publisher: Amer Scientific Pub
ISBN: 9781588830678
Category : Technology & Engineering
Languages : en
Pages : 488

Get Book Here

Book Description


An Introduction to Chemical Kinetics

An Introduction to Chemical Kinetics PDF Author: Michel Soustelle
Publisher: John Wiley & Sons
ISBN: 1118604229
Category : Science
Languages : en
Pages : 484

Get Book Here

Book Description
This book is a progressive presentation of kinetics of the chemical reactions. It provides complete coverage of the domain of chemical kinetics, which is necessary for the various future users in the fields of Chemistry, Physical Chemistry, Materials Science, Chemical Engineering, Macromolecular Chemistry and Combustion. It will help them to understand the most sophisticated knowledge of their future job area. Over 15 chapters, this book present the fundamentals of chemical kinetics, its relations with reaction mechanisms and kinetic properties. Two chapters are then devoted to experimental results and how to calculate the kinetic laws in both homogeneous and heterogeneous systems. The following two chapters describe the main approximation modes to calculate these laws. Three chapters are devoted to elementary steps with the various classes, the principles used to write them and their modeling using the theory of the activated complex in gas and condensed phases. Three chapters are devoted to the particular areas of chemical reactions, chain reactions, catalysis and the stoichiometric heterogeneous reactions. Finally the non-steady-state processes of combustion and explosion are treated in the final chapter.