Modeling and Computational Methods for Kinetic Equations

Modeling and Computational Methods for Kinetic Equations PDF Author: Pierre Degond
Publisher: Springer Science & Business Media
ISBN: 9780817632540
Category : Mathematics
Languages : en
Pages : 372

Get Book Here

Book Description
In recent years kinetic theory has developed in many areas of the physical sciences and engineering, and has extended the borders of its traditional fields of application. New applications in traffic flow engineering, granular media modeling, and polymer and phase transition physics have resulted in new numerical algorithms which depart from traditional stochastic Monte--Carlo methods. This monograph is a self-contained presentation of such recently developed aspects of kinetic theory, as well as a comprehensive account of the fundamentals of the theory. Emphasizing modeling techniques and numerical methods, the book provides a unified treatment of kinetic equations not found in more focused theoretical or applied works. The book is divided into two parts. Part I is devoted to the most fundamental kinetic model: the Boltzmann equation of rarefied gas dynamics. Additionally, widely used numerical methods for the discretization of the Boltzmann equation are reviewed: the Monte--Carlo method, spectral methods, and finite-difference methods. Part II considers specific applications: plasma kinetic modeling using the Landau--Fokker--Planck equations, traffic flow modeling, granular media modeling, quantum kinetic modeling, and coagulation-fragmentation problems. Modeling and Computational Methods of Kinetic Equations will be accessible to readers working in different communities where kinetic theory is important: graduate students, researchers and practitioners in mathematical physics, applied mathematics, and various branches of engineering. The work may be used for self-study, as a reference text, or in graduate-level courses in kinetic theory and its applications.

Modeling and Computational Methods for Kinetic Equations

Modeling and Computational Methods for Kinetic Equations PDF Author: Pierre Degond
Publisher: Springer Science & Business Media
ISBN: 9780817632540
Category : Mathematics
Languages : en
Pages : 372

Get Book Here

Book Description
In recent years kinetic theory has developed in many areas of the physical sciences and engineering, and has extended the borders of its traditional fields of application. New applications in traffic flow engineering, granular media modeling, and polymer and phase transition physics have resulted in new numerical algorithms which depart from traditional stochastic Monte--Carlo methods. This monograph is a self-contained presentation of such recently developed aspects of kinetic theory, as well as a comprehensive account of the fundamentals of the theory. Emphasizing modeling techniques and numerical methods, the book provides a unified treatment of kinetic equations not found in more focused theoretical or applied works. The book is divided into two parts. Part I is devoted to the most fundamental kinetic model: the Boltzmann equation of rarefied gas dynamics. Additionally, widely used numerical methods for the discretization of the Boltzmann equation are reviewed: the Monte--Carlo method, spectral methods, and finite-difference methods. Part II considers specific applications: plasma kinetic modeling using the Landau--Fokker--Planck equations, traffic flow modeling, granular media modeling, quantum kinetic modeling, and coagulation-fragmentation problems. Modeling and Computational Methods of Kinetic Equations will be accessible to readers working in different communities where kinetic theory is important: graduate students, researchers and practitioners in mathematical physics, applied mathematics, and various branches of engineering. The work may be used for self-study, as a reference text, or in graduate-level courses in kinetic theory and its applications.

Many-Particle Dynamics and Kinetic Equations

Many-Particle Dynamics and Kinetic Equations PDF Author: C. Cercignani
Publisher: Springer Science & Business Media
ISBN: 9780792346968
Category : Science
Languages : en
Pages : 262

Get Book Here

Book Description
As our title suggests, there are two aspects in the subject of this book. The first is the mathematical investigation of the dynamics of infinite systems of in teracting particles and the description of the time evolution of their states. The second is the rigorous derivation of kinetic equations starting from the results of the aforementioned investigation. As is well known, statistical mechanics started in the last century with some papers written by Maxwell and Boltzmann. Although some of their statements seemed statistically obvious, we must prove that they do not contradict what me chanics predicts. In some cases, in particular for equilibrium states, it turns out that mechanics easily provides the required justification. However things are not so easy, if we take a step forward and consider a gas is not in equilibrium, as is, e.g., the case for air around a flying vehicle. Questions of this kind have been asked since the dawn of the kinetic theory of gases, especially when certain results appeared to lead to paradoxical conclu sions. Today this matter is rather well understood and a rigorous kinetic theory is emerging. The importance of these developments stems not only from the need of providing a careful foundation of such a basic physical theory, but also to exhibit a prototype of a mathematical construct central to the theory of non-equilibrium phenomena of macroscopic size.

Uncertainty Quantification for Hyperbolic and Kinetic Equations

Uncertainty Quantification for Hyperbolic and Kinetic Equations PDF Author: Shi Jin
Publisher: Springer
ISBN: 3319671103
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
This book explores recent advances in uncertainty quantification for hyperbolic, kinetic, and related problems. The contributions address a range of different aspects, including: polynomial chaos expansions, perturbation methods, multi-level Monte Carlo methods, importance sampling, and moment methods. The interest in these topics is rapidly growing, as their applications have now expanded to many areas in engineering, physics, biology and the social sciences. Accordingly, the book provides the scientific community with a topical overview of the latest research efforts.

Kinetic Boltzmann, Vlasov and Related Equations

Kinetic Boltzmann, Vlasov and Related Equations PDF Author: Alexander Sinitsyn
Publisher: Elsevier
ISBN: 0123877792
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in 1938 and serves as a basis of plasma physics and describes large-scale processes and galaxies in astronomy, star wind theory. This book provides a comprehensive review of both equations and presents both classical and modern applications. In addition, it discusses several open problems of great importance. Reviews the whole field from the beginning to today Includes practical applications Provides classical and modern (semi-analytical) solutions

Kinetic Boltzmann, Vlasov and Related Equations

Kinetic Boltzmann, Vlasov and Related Equations PDF Author: Alexander Sinitsyn
Publisher: Elsevier
ISBN: 0123877806
Category : Mathematics
Languages : en
Pages : 321

Get Book Here

Book Description
Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in 1938 and serves as a basis of plasma physics and describes large-scale processes and galaxies in astronomy, star wind theory.This book provides a comprehensive review of both equations and presents both classical and modern applications. In addition, it discusses several open problems of great importance. - Reviews the whole field from the beginning to today - Includes practical applications - Provides classical and modern (semi-analytical) solutions

Kinetic Equations and Asymptotic Theory

Kinetic Equations and Asymptotic Theory PDF Author: François Bouchut
Publisher: Elsevier Masson
ISBN:
Category : Science
Languages : en
Pages : 180

Get Book Here

Book Description


Modeling and Computational Methods for Kinetic Equations

Modeling and Computational Methods for Kinetic Equations PDF Author: Pierre Degond
Publisher: Springer Science & Business Media
ISBN: 0817682007
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
In recent years kinetic theory has developed in many areas of the physical sciences and engineering, and has extended the borders of its traditional fields of application. This monograph is a self-contained presentation of such recently developed aspects of kinetic theory, as well as a comprehensive account of the fundamentals of the theory. Emphasizing modeling techniques and numerical methods, the book provides a unified treatment of kinetic equations not found in more focused works. Specific applications presented include plasma kinetic models, traffic flow models, granular media models, and coagulation-fragmentation problems. The work may be used for self-study, as a reference text, or in graduate-level courses in kinetic theory and its applications.

Interacting Multiagent Systems

Interacting Multiagent Systems PDF Author: Lorenzo Pareschi
Publisher: Oxford University Press, USA
ISBN: 0199655464
Category : Business & Economics
Languages : en
Pages : 391

Get Book Here

Book Description
Mathematical modelling of systems constituted by many agents using kinetic theory is a new tool that has proved effective in predicting the emergence of collective behaviours and self-organization. This idea has been applied by the authors to various problems which range from sociology to economics and life sciences.

Integral Geometry and Inverse Problems for Kinetic Equations

Integral Geometry and Inverse Problems for Kinetic Equations PDF Author: A. Kh Amirov
Publisher: VSP
ISBN: 9789067643528
Category : Mathematics
Languages : en
Pages : 220

Get Book Here

Book Description
In this monograph a new method for proving the solvability of integral geometry problems and inverse problems for kinetic equations is presented. The application of this method has led to interesting problems of the Dirichlet type for third order differential equations, the solvability of which appears to depend on the geometry of the domain for which the problem is stated.Another subject of the book is the problem of integral geometry on paraboloids, in particular the uniqueness of solutions to the Goursat problem for a differential inequality, which implies new theorems on the uniqueness of solutions to this problem for a class of quasilinear hyperbolic equations. A class of multidimensional inverse problems associated with problems of integral geometry and the inverse problem for the quantum kinetic equations are also included.This monograph will be of value and interest to mathematicians who deal with problems of integral geometry, direct and inverse problems of mathematical physics and geophysics and for specialists in computerized tomography.

Kinetic Equations

Kinetic Equations PDF Author: Alexander V. Bobylev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110550172
Category : Mathematics
Languages : en
Pages : 275

Get Book Here

Book Description
The series is devoted to the publication of high-level monographs and specialized graduate texts which cover the whole spectrum of applied mathematics, including its numerical aspects. The focus of the series is on the interplay between mathematical and numerical analysis, and also on its applications to mathematical models in the physical and life sciences. The aim of the series is to be an active forum for the dissemination of up-to-date information in the form of authoritative works that will serve the applied mathematics community as the basis for further research. Editorial Board Rémi Abgrall, Universität Zürich, Switzerland José Antonio Carrillo de la Plata, University of Oxford, UK Jean-Michel Coron, Université Pierre et Marie Curie, Paris, France Athanassios S. Fokas, Cambridge University, UK Irene Fonseca, Carnegie Mellon University, Pittsburgh, USA