Author: Wael M. S. Yafooz
Publisher: Springer Nature
ISBN: 3031211995
Category : Technology & Engineering
Languages : en
Pages : 279
Book Description
This book introduces and presents the newest up-to-date methods, approaches and technologies on how to detect child cyberbullying on social media as well as monitor kids E-learning, monitor games designed and social media activities for kids. On a daily basis, children are exposed to harmful content online. There have been many attempts to resolve this issue by conducting methods based on rating and ranking as well as reviewing comments to show the relevancy of these videos to children; unfortunately, there still remains a lack of supervision on videos dedicated to kids. This book also introduces a new algorithm for content analysis against harmful information for kids. Furthermore, it establishes the goal to track useful information of kids and institutes detection of kid’s textual aggression through methods of machine and deep learning and natural language processing for a safer space for children on social media and online and to combat problems, such as lack of supervision, cyberbullying, kid’s exposure to harmful content. This book is beneficial to postgraduate students and researchers' concerns on recent methods and approaches to kids' cybersecurity.
Kids Cybersecurity Using Computational Intelligence Techniques
Author: Wael M. S. Yafooz
Publisher: Springer Nature
ISBN: 3031211995
Category : Technology & Engineering
Languages : en
Pages : 279
Book Description
This book introduces and presents the newest up-to-date methods, approaches and technologies on how to detect child cyberbullying on social media as well as monitor kids E-learning, monitor games designed and social media activities for kids. On a daily basis, children are exposed to harmful content online. There have been many attempts to resolve this issue by conducting methods based on rating and ranking as well as reviewing comments to show the relevancy of these videos to children; unfortunately, there still remains a lack of supervision on videos dedicated to kids. This book also introduces a new algorithm for content analysis against harmful information for kids. Furthermore, it establishes the goal to track useful information of kids and institutes detection of kid’s textual aggression through methods of machine and deep learning and natural language processing for a safer space for children on social media and online and to combat problems, such as lack of supervision, cyberbullying, kid’s exposure to harmful content. This book is beneficial to postgraduate students and researchers' concerns on recent methods and approaches to kids' cybersecurity.
Publisher: Springer Nature
ISBN: 3031211995
Category : Technology & Engineering
Languages : en
Pages : 279
Book Description
This book introduces and presents the newest up-to-date methods, approaches and technologies on how to detect child cyberbullying on social media as well as monitor kids E-learning, monitor games designed and social media activities for kids. On a daily basis, children are exposed to harmful content online. There have been many attempts to resolve this issue by conducting methods based on rating and ranking as well as reviewing comments to show the relevancy of these videos to children; unfortunately, there still remains a lack of supervision on videos dedicated to kids. This book also introduces a new algorithm for content analysis against harmful information for kids. Furthermore, it establishes the goal to track useful information of kids and institutes detection of kid’s textual aggression through methods of machine and deep learning and natural language processing for a safer space for children on social media and online and to combat problems, such as lack of supervision, cyberbullying, kid’s exposure to harmful content. This book is beneficial to postgraduate students and researchers' concerns on recent methods and approaches to kids' cybersecurity.
Combatting Cyberbullying in Digital Media with Artificial Intelligence
Author: Mohamed Lahby
Publisher: CRC Press
ISBN: 1003825036
Category : Computers
Languages : en
Pages : 303
Book Description
Rapid advancements in mobile computing and communication technology and recent technological progress have opened up a plethora of opportunities. These advancements have expanded knowledge, facilitated global business, enhanced collaboration, and connected people through various digital media platforms. While these virtual platforms have provided new avenues for communication and self-expression, they also pose significant threats to our privacy. As a result, we must remain vigilant against the propagation of electronic violence through social networks. Cyberbullying has emerged as a particularly concerning form of online harassment and bullying, with instances of racism, terrorism, and various types of trolling becoming increasingly prevalent worldwide. Addressing the issue of cyberbullying to find effective solutions is a challenge for the web mining community, particularly within the realm of social media. In this context, artificial intelligence (AI) can serve as a valuable tool in combating the diverse manifestations of cyberbullying on the Internet and social networks. This book presents the latest cutting-edge research, theoretical methods, and novel applications in AI techniques to combat cyberbullying. Discussing new models, practical solutions, and technological advances related to detecting and analyzing cyberbullying is based on AI models and other related techniques. Furthermore, the book helps readers understand AI techniques to combat cyberbullying systematically and forthrightly, as well as future insights and the societal and technical aspects of natural language processing (NLP)-based cyberbullying research efforts. Key Features: Proposes new models, practical solutions and technological advances related to machine intelligence techniques for detecting cyberbullying across multiple social media platforms. Combines both theory and practice so that readers (beginners or experts) of this book can find both a description of the concepts and context related to the machine intelligence. Includes many case studies and applications of machine intelligence for combating cyberbullying.
Publisher: CRC Press
ISBN: 1003825036
Category : Computers
Languages : en
Pages : 303
Book Description
Rapid advancements in mobile computing and communication technology and recent technological progress have opened up a plethora of opportunities. These advancements have expanded knowledge, facilitated global business, enhanced collaboration, and connected people through various digital media platforms. While these virtual platforms have provided new avenues for communication and self-expression, they also pose significant threats to our privacy. As a result, we must remain vigilant against the propagation of electronic violence through social networks. Cyberbullying has emerged as a particularly concerning form of online harassment and bullying, with instances of racism, terrorism, and various types of trolling becoming increasingly prevalent worldwide. Addressing the issue of cyberbullying to find effective solutions is a challenge for the web mining community, particularly within the realm of social media. In this context, artificial intelligence (AI) can serve as a valuable tool in combating the diverse manifestations of cyberbullying on the Internet and social networks. This book presents the latest cutting-edge research, theoretical methods, and novel applications in AI techniques to combat cyberbullying. Discussing new models, practical solutions, and technological advances related to detecting and analyzing cyberbullying is based on AI models and other related techniques. Furthermore, the book helps readers understand AI techniques to combat cyberbullying systematically and forthrightly, as well as future insights and the societal and technical aspects of natural language processing (NLP)-based cyberbullying research efforts. Key Features: Proposes new models, practical solutions and technological advances related to machine intelligence techniques for detecting cyberbullying across multiple social media platforms. Combines both theory and practice so that readers (beginners or experts) of this book can find both a description of the concepts and context related to the machine intelligence. Includes many case studies and applications of machine intelligence for combating cyberbullying.
Data-Driven Modelling and Predictive Analytics in Business and Finance
Author: Alex Khang
Publisher: CRC Press
ISBN: 1040088465
Category : Computers
Languages : en
Pages : 443
Book Description
Data-driven and AI-aided applications are next-generation technologies that can be used to visualize and realize intelligent transactions in finance, banking, and business. These transactions will be enabled by powerful data-driven solutions, IoT technologies, AI-aided techniques, data analytics, and visualization tools. To implement these solutions, frameworks will be needed to support human control of intelligent computing and modern business systems. The power and consistency of data-driven competencies are a critical challenge, and so is developing explainable AI (XAI) to make data-driven transactions transparent. Data- Driven Modelling and Predictive Analytics in Business and Finance covers the need for intelligent business solutions and applications. Explaining how business applications use algorithms and models to bring out the desired results, the book covers: Data-driven modelling Predictive analytics Data analytics and visualization tools AI-aided applications Cybersecurity techniques Cloud computing IoT-enabled systems for developing smart financial systems This book was written for business analysts, financial analysts, scholars, researchers, academics, professionals, and students so they may be able to share and contribute new ideas, methodologies, technologies, approaches, models, frameworks, theories, and practices.
Publisher: CRC Press
ISBN: 1040088465
Category : Computers
Languages : en
Pages : 443
Book Description
Data-driven and AI-aided applications are next-generation technologies that can be used to visualize and realize intelligent transactions in finance, banking, and business. These transactions will be enabled by powerful data-driven solutions, IoT technologies, AI-aided techniques, data analytics, and visualization tools. To implement these solutions, frameworks will be needed to support human control of intelligent computing and modern business systems. The power and consistency of data-driven competencies are a critical challenge, and so is developing explainable AI (XAI) to make data-driven transactions transparent. Data- Driven Modelling and Predictive Analytics in Business and Finance covers the need for intelligent business solutions and applications. Explaining how business applications use algorithms and models to bring out the desired results, the book covers: Data-driven modelling Predictive analytics Data analytics and visualization tools AI-aided applications Cybersecurity techniques Cloud computing IoT-enabled systems for developing smart financial systems This book was written for business analysts, financial analysts, scholars, researchers, academics, professionals, and students so they may be able to share and contribute new ideas, methodologies, technologies, approaches, models, frameworks, theories, and practices.
Proceedings of International Conference on Network Security and Blockchain Technology
Author: Debasis Giri
Publisher: Springer Nature
ISBN: 9811931828
Category : Technology & Engineering
Languages : en
Pages : 415
Book Description
The book is a collection of best selected research papers presented at International Conference on Network Security and Blockchain Technology (ICNSBT 2021), organized by Computer Society of India—Kolkata Chapter, India, during December 2–4, 2021. The book discusses recent developments and contemporary research in cryptography, network security, cyber security, and blockchain technology. Authors are eminent academicians, scientists, researchers, and scholars in their respective fields from across the world.
Publisher: Springer Nature
ISBN: 9811931828
Category : Technology & Engineering
Languages : en
Pages : 415
Book Description
The book is a collection of best selected research papers presented at International Conference on Network Security and Blockchain Technology (ICNSBT 2021), organized by Computer Society of India—Kolkata Chapter, India, during December 2–4, 2021. The book discusses recent developments and contemporary research in cryptography, network security, cyber security, and blockchain technology. Authors are eminent academicians, scientists, researchers, and scholars in their respective fields from across the world.
Big Data, Cloud Computing and IoT
Author: Sita Rani
Publisher: CRC Press
ISBN: 1000862372
Category : Computers
Languages : en
Pages : 337
Book Description
Cloud computing, the Internet of Things (IoT), and big data are three significant technological trends affecting the world's largest corporations. This book discusses big data, cloud computing, and the IoT, with a focus on the benefits and implementation problems. In addition, it examines the many structures and applications pertinent to these disciplines. Also, big data, cloud computing, and the IoT are proposed as possible study avenues. Features: Informs about cloud computing, IoT and big data, including theoretical foundations and the most recent empirical findings Provides essential research on the relationship between various technologies and the aggregate influence they have on solving real-world problems Ideal for academicians, developers, researchers, computer scientists, practitioners, information technology professionals, students, scholars, and engineers exploring research on the incorporation of technological innovations to address contemporary societal challenges
Publisher: CRC Press
ISBN: 1000862372
Category : Computers
Languages : en
Pages : 337
Book Description
Cloud computing, the Internet of Things (IoT), and big data are three significant technological trends affecting the world's largest corporations. This book discusses big data, cloud computing, and the IoT, with a focus on the benefits and implementation problems. In addition, it examines the many structures and applications pertinent to these disciplines. Also, big data, cloud computing, and the IoT are proposed as possible study avenues. Features: Informs about cloud computing, IoT and big data, including theoretical foundations and the most recent empirical findings Provides essential research on the relationship between various technologies and the aggregate influence they have on solving real-world problems Ideal for academicians, developers, researchers, computer scientists, practitioners, information technology professionals, students, scholars, and engineers exploring research on the incorporation of technological innovations to address contemporary societal challenges
Machine Learning for Cybersecurity Cookbook
Author: Emmanuel Tsukerman
Publisher: Packt Publishing Ltd
ISBN: 1838556346
Category : Computers
Languages : en
Pages : 338
Book Description
Learn how to apply modern AI to create powerful cybersecurity solutions for malware, pentesting, social engineering, data privacy, and intrusion detection Key FeaturesManage data of varying complexity to protect your system using the Python ecosystemApply ML to pentesting, malware, data privacy, intrusion detection system(IDS) and social engineeringAutomate your daily workflow by addressing various security challenges using the recipes covered in the bookBook Description Organizations today face a major threat in terms of cybersecurity, from malicious URLs to credential reuse, and having robust security systems can make all the difference. With this book, you'll learn how to use Python libraries such as TensorFlow and scikit-learn to implement the latest artificial intelligence (AI) techniques and handle challenges faced by cybersecurity researchers. You'll begin by exploring various machine learning (ML) techniques and tips for setting up a secure lab environment. Next, you'll implement key ML algorithms such as clustering, gradient boosting, random forest, and XGBoost. The book will guide you through constructing classifiers and features for malware, which you'll train and test on real samples. As you progress, you'll build self-learning, reliant systems to handle cybersecurity tasks such as identifying malicious URLs, spam email detection, intrusion detection, network protection, and tracking user and process behavior. Later, you'll apply generative adversarial networks (GANs) and autoencoders to advanced security tasks. Finally, you'll delve into secure and private AI to protect the privacy rights of consumers using your ML models. By the end of this book, you'll have the skills you need to tackle real-world problems faced in the cybersecurity domain using a recipe-based approach. What you will learnLearn how to build malware classifiers to detect suspicious activitiesApply ML to generate custom malware to pentest your securityUse ML algorithms with complex datasets to implement cybersecurity conceptsCreate neural networks to identify fake videos and imagesSecure your organization from one of the most popular threats – insider threatsDefend against zero-day threats by constructing an anomaly detection systemDetect web vulnerabilities effectively by combining Metasploit and MLUnderstand how to train a model without exposing the training dataWho this book is for This book is for cybersecurity professionals and security researchers who are looking to implement the latest machine learning techniques to boost computer security, and gain insights into securing an organization using red and blue team ML. This recipe-based book will also be useful for data scientists and machine learning developers who want to experiment with smart techniques in the cybersecurity domain. Working knowledge of Python programming and familiarity with cybersecurity fundamentals will help you get the most out of this book.
Publisher: Packt Publishing Ltd
ISBN: 1838556346
Category : Computers
Languages : en
Pages : 338
Book Description
Learn how to apply modern AI to create powerful cybersecurity solutions for malware, pentesting, social engineering, data privacy, and intrusion detection Key FeaturesManage data of varying complexity to protect your system using the Python ecosystemApply ML to pentesting, malware, data privacy, intrusion detection system(IDS) and social engineeringAutomate your daily workflow by addressing various security challenges using the recipes covered in the bookBook Description Organizations today face a major threat in terms of cybersecurity, from malicious URLs to credential reuse, and having robust security systems can make all the difference. With this book, you'll learn how to use Python libraries such as TensorFlow and scikit-learn to implement the latest artificial intelligence (AI) techniques and handle challenges faced by cybersecurity researchers. You'll begin by exploring various machine learning (ML) techniques and tips for setting up a secure lab environment. Next, you'll implement key ML algorithms such as clustering, gradient boosting, random forest, and XGBoost. The book will guide you through constructing classifiers and features for malware, which you'll train and test on real samples. As you progress, you'll build self-learning, reliant systems to handle cybersecurity tasks such as identifying malicious URLs, spam email detection, intrusion detection, network protection, and tracking user and process behavior. Later, you'll apply generative adversarial networks (GANs) and autoencoders to advanced security tasks. Finally, you'll delve into secure and private AI to protect the privacy rights of consumers using your ML models. By the end of this book, you'll have the skills you need to tackle real-world problems faced in the cybersecurity domain using a recipe-based approach. What you will learnLearn how to build malware classifiers to detect suspicious activitiesApply ML to generate custom malware to pentest your securityUse ML algorithms with complex datasets to implement cybersecurity conceptsCreate neural networks to identify fake videos and imagesSecure your organization from one of the most popular threats – insider threatsDefend against zero-day threats by constructing an anomaly detection systemDetect web vulnerabilities effectively by combining Metasploit and MLUnderstand how to train a model without exposing the training dataWho this book is for This book is for cybersecurity professionals and security researchers who are looking to implement the latest machine learning techniques to boost computer security, and gain insights into securing an organization using red and blue team ML. This recipe-based book will also be useful for data scientists and machine learning developers who want to experiment with smart techniques in the cybersecurity domain. Working knowledge of Python programming and familiarity with cybersecurity fundamentals will help you get the most out of this book.
Handbook of Research on Data Science and Cybersecurity Innovations in Industry 4.0 Technologies
Author: Murugan, Thangavel
Publisher: IGI Global
ISBN: 1668481472
Category : Computers
Languages : en
Pages : 649
Book Description
Disruptive innovations are now propelling Industry 4.0 (I4.0) and presenting new opportunities for value generation in all major industry segments. I4.0 technologies' innovations in cybersecurity and data science provide smart apps and services with accurate real-time monitoring and control. Through enhanced access to real-time information, it also aims to increase overall effectiveness, lower costs, and increase the efficiency of people, processes, and technology. The Handbook of Research on Data Science and Cybersecurity Innovations in Industry 4.0 Technologies discusses the technological foundations of cybersecurity and data science within the scope of the I4.0 landscape and details the existing cybersecurity and data science innovations with I4.0 applications, as well as state-of-the-art solutions with regard to both academic research and practical implementations. Covering key topics such as data science, blockchain, and artificial intelligence, this premier reference source is ideal for industry professionals, computer scientists, scholars, researchers, academicians, practitioners, instructors, and students.
Publisher: IGI Global
ISBN: 1668481472
Category : Computers
Languages : en
Pages : 649
Book Description
Disruptive innovations are now propelling Industry 4.0 (I4.0) and presenting new opportunities for value generation in all major industry segments. I4.0 technologies' innovations in cybersecurity and data science provide smart apps and services with accurate real-time monitoring and control. Through enhanced access to real-time information, it also aims to increase overall effectiveness, lower costs, and increase the efficiency of people, processes, and technology. The Handbook of Research on Data Science and Cybersecurity Innovations in Industry 4.0 Technologies discusses the technological foundations of cybersecurity and data science within the scope of the I4.0 landscape and details the existing cybersecurity and data science innovations with I4.0 applications, as well as state-of-the-art solutions with regard to both academic research and practical implementations. Covering key topics such as data science, blockchain, and artificial intelligence, this premier reference source is ideal for industry professionals, computer scientists, scholars, researchers, academicians, practitioners, instructors, and students.
Cyber Warfare
Author: Jason Andress
Publisher: Elsevier
ISBN: 1597496383
Category : Computers
Languages : en
Pages : 322
Book Description
Cyber Warfare Techniques, Tactics and Tools for Security Practitioners provides a comprehensive look at how and why digital warfare is waged. This book explores the participants, battlefields, and the tools and techniques used during today's digital conflicts. The concepts discussed will give students of information security a better idea of how cyber conflicts are carried out now, how they will change in the future, and how to detect and defend against espionage, hacktivism, insider threats and non-state actors such as organized criminals and terrorists. Every one of our systems is under attack from multiple vectors - our defenses must be ready all the time and our alert systems must detect the threats every time. This book provides concrete examples and real-world guidance on how to identify and defend a network against malicious attacks. It considers relevant technical and factual information from an insider's point of view, as well as the ethics, laws and consequences of cyber war and how computer criminal law may change as a result. Starting with a definition of cyber warfare, the book's 15 chapters discuss the following topics: the cyberspace battlefield; cyber doctrine; cyber warriors; logical, physical, and psychological weapons; computer network exploitation; computer network attack and defense; non-state actors in computer network operations; legal system impacts; ethics in cyber warfare; cyberspace challenges; and the future of cyber war. This book is a valuable resource to those involved in cyber warfare activities, including policymakers, penetration testers, security professionals, network and systems administrators, and college instructors. The information provided on cyber tactics and attacks can also be used to assist in developing improved and more efficient procedures and technical defenses. Managers will find the text useful in improving the overall risk management strategies for their organizations. - Provides concrete examples and real-world guidance on how to identify and defend your network against malicious attacks - Dives deeply into relevant technical and factual information from an insider's point of view - Details the ethics, laws and consequences of cyber war and how computer criminal law may change as a result
Publisher: Elsevier
ISBN: 1597496383
Category : Computers
Languages : en
Pages : 322
Book Description
Cyber Warfare Techniques, Tactics and Tools for Security Practitioners provides a comprehensive look at how and why digital warfare is waged. This book explores the participants, battlefields, and the tools and techniques used during today's digital conflicts. The concepts discussed will give students of information security a better idea of how cyber conflicts are carried out now, how they will change in the future, and how to detect and defend against espionage, hacktivism, insider threats and non-state actors such as organized criminals and terrorists. Every one of our systems is under attack from multiple vectors - our defenses must be ready all the time and our alert systems must detect the threats every time. This book provides concrete examples and real-world guidance on how to identify and defend a network against malicious attacks. It considers relevant technical and factual information from an insider's point of view, as well as the ethics, laws and consequences of cyber war and how computer criminal law may change as a result. Starting with a definition of cyber warfare, the book's 15 chapters discuss the following topics: the cyberspace battlefield; cyber doctrine; cyber warriors; logical, physical, and psychological weapons; computer network exploitation; computer network attack and defense; non-state actors in computer network operations; legal system impacts; ethics in cyber warfare; cyberspace challenges; and the future of cyber war. This book is a valuable resource to those involved in cyber warfare activities, including policymakers, penetration testers, security professionals, network and systems administrators, and college instructors. The information provided on cyber tactics and attacks can also be used to assist in developing improved and more efficient procedures and technical defenses. Managers will find the text useful in improving the overall risk management strategies for their organizations. - Provides concrete examples and real-world guidance on how to identify and defend your network against malicious attacks - Dives deeply into relevant technical and factual information from an insider's point of view - Details the ethics, laws and consequences of cyber war and how computer criminal law may change as a result
Software Engineering Methods Design and Application
Author: Radek Silhavy
Publisher: Springer Nature
ISBN: 3031702859
Category :
Languages : en
Pages : 799
Book Description
Publisher: Springer Nature
ISBN: 3031702859
Category :
Languages : en
Pages : 799
Book Description
Hands-On Machine Learning for Cybersecurity
Author: Soma Halder
Publisher: Packt Publishing Ltd
ISBN: 178899096X
Category : Computers
Languages : en
Pages : 306
Book Description
Get into the world of smart data security using machine learning algorithms and Python libraries Key FeaturesLearn machine learning algorithms and cybersecurity fundamentalsAutomate your daily workflow by applying use cases to many facets of securityImplement smart machine learning solutions to detect various cybersecurity problemsBook Description Cyber threats today are one of the costliest losses that an organization can face. In this book, we use the most efficient tool to solve the big problems that exist in the cybersecurity domain. The book begins by giving you the basics of ML in cybersecurity using Python and its libraries. You will explore various ML domains (such as time series analysis and ensemble modeling) to get your foundations right. You will implement various examples such as building system to identify malicious URLs, and building a program to detect fraudulent emails and spam. Later, you will learn how to make effective use of K-means algorithm to develop a solution to detect and alert you to any malicious activity in the network. Also learn how to implement biometrics and fingerprint to validate whether the user is a legitimate user or not. Finally, you will see how we change the game with TensorFlow and learn how deep learning is effective for creating models and training systems What you will learnUse machine learning algorithms with complex datasets to implement cybersecurity conceptsImplement machine learning algorithms such as clustering, k-means, and Naive Bayes to solve real-world problemsLearn to speed up a system using Python libraries with NumPy, Scikit-learn, and CUDAUnderstand how to combat malware, detect spam, and fight financial fraud to mitigate cyber crimesUse TensorFlow in the cybersecurity domain and implement real-world examplesLearn how machine learning and Python can be used in complex cyber issuesWho this book is for This book is for the data scientists, machine learning developers, security researchers, and anyone keen to apply machine learning to up-skill computer security. Having some working knowledge of Python and being familiar with the basics of machine learning and cybersecurity fundamentals will help to get the most out of the book
Publisher: Packt Publishing Ltd
ISBN: 178899096X
Category : Computers
Languages : en
Pages : 306
Book Description
Get into the world of smart data security using machine learning algorithms and Python libraries Key FeaturesLearn machine learning algorithms and cybersecurity fundamentalsAutomate your daily workflow by applying use cases to many facets of securityImplement smart machine learning solutions to detect various cybersecurity problemsBook Description Cyber threats today are one of the costliest losses that an organization can face. In this book, we use the most efficient tool to solve the big problems that exist in the cybersecurity domain. The book begins by giving you the basics of ML in cybersecurity using Python and its libraries. You will explore various ML domains (such as time series analysis and ensemble modeling) to get your foundations right. You will implement various examples such as building system to identify malicious URLs, and building a program to detect fraudulent emails and spam. Later, you will learn how to make effective use of K-means algorithm to develop a solution to detect and alert you to any malicious activity in the network. Also learn how to implement biometrics and fingerprint to validate whether the user is a legitimate user or not. Finally, you will see how we change the game with TensorFlow and learn how deep learning is effective for creating models and training systems What you will learnUse machine learning algorithms with complex datasets to implement cybersecurity conceptsImplement machine learning algorithms such as clustering, k-means, and Naive Bayes to solve real-world problemsLearn to speed up a system using Python libraries with NumPy, Scikit-learn, and CUDAUnderstand how to combat malware, detect spam, and fight financial fraud to mitigate cyber crimesUse TensorFlow in the cybersecurity domain and implement real-world examplesLearn how machine learning and Python can be used in complex cyber issuesWho this book is for This book is for the data scientists, machine learning developers, security researchers, and anyone keen to apply machine learning to up-skill computer security. Having some working knowledge of Python and being familiar with the basics of machine learning and cybersecurity fundamentals will help to get the most out of the book