Keras 2.x Projects

Keras 2.x Projects PDF Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
ISBN: 178953416X
Category : Computers
Languages : en
Pages : 386

Get Book Here

Book Description
Demonstrate fundamentals of Deep Learning and neural network methodologies using Keras 2.x Key FeaturesExperimental projects showcasing the implementation of high-performance deep learning models with Keras.Use-cases across reinforcement learning, natural language processing, GANs and computer vision.Build strong fundamentals of Keras in the area of deep learning and artificial intelligence.Book Description Keras 2.x Projects explains how to leverage the power of Keras to build and train state-of-the-art deep learning models through a series of practical projects that look at a range of real-world application areas. To begin with, you will quickly set up a deep learning environment by installing the Keras library. Through each of the projects, you will explore and learn the advanced concepts of deep learning and will learn how to compute and run your deep learning models using the advanced offerings of Keras. You will train fully-connected multilayer networks, convolutional neural networks, recurrent neural networks, autoencoders and generative adversarial networks using real-world training datasets. The projects you will undertake are all based on real-world scenarios of all complexity levels, covering topics such as language recognition, stock volatility, energy consumption prediction, faster object classification for self-driving vehicles, and more. By the end of this book, you will be well versed with deep learning and its implementation with Keras. You will have all the knowledge you need to train your own deep learning models to solve different kinds of problems. What you will learnApply regression methods to your data and understand how the regression algorithm worksUnderstand the basic concepts of classification methods and how to implement them in the Keras environmentImport and organize data for neural network classification analysisLearn about the role of rectified linear units in the Keras network architectureImplement a recurrent neural network to classify the sentiment of sentences from movie reviewsSet the embedding layer and the tensor sizes of a networkWho this book is for If you are a data scientist, machine learning engineer, deep learning practitioner or an AI engineer who wants to build speedy intelligent applications with minimal lines of codes, then this book is the best fit for you. Sound knowledge of machine learning and basic familiarity with Keras library would be useful.

Keras 2.x Projects

Keras 2.x Projects PDF Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
ISBN: 178953416X
Category : Computers
Languages : en
Pages : 386

Get Book Here

Book Description
Demonstrate fundamentals of Deep Learning and neural network methodologies using Keras 2.x Key FeaturesExperimental projects showcasing the implementation of high-performance deep learning models with Keras.Use-cases across reinforcement learning, natural language processing, GANs and computer vision.Build strong fundamentals of Keras in the area of deep learning and artificial intelligence.Book Description Keras 2.x Projects explains how to leverage the power of Keras to build and train state-of-the-art deep learning models through a series of practical projects that look at a range of real-world application areas. To begin with, you will quickly set up a deep learning environment by installing the Keras library. Through each of the projects, you will explore and learn the advanced concepts of deep learning and will learn how to compute and run your deep learning models using the advanced offerings of Keras. You will train fully-connected multilayer networks, convolutional neural networks, recurrent neural networks, autoencoders and generative adversarial networks using real-world training datasets. The projects you will undertake are all based on real-world scenarios of all complexity levels, covering topics such as language recognition, stock volatility, energy consumption prediction, faster object classification for self-driving vehicles, and more. By the end of this book, you will be well versed with deep learning and its implementation with Keras. You will have all the knowledge you need to train your own deep learning models to solve different kinds of problems. What you will learnApply regression methods to your data and understand how the regression algorithm worksUnderstand the basic concepts of classification methods and how to implement them in the Keras environmentImport and organize data for neural network classification analysisLearn about the role of rectified linear units in the Keras network architectureImplement a recurrent neural network to classify the sentiment of sentences from movie reviewsSet the embedding layer and the tensor sizes of a networkWho this book is for If you are a data scientist, machine learning engineer, deep learning practitioner or an AI engineer who wants to build speedy intelligent applications with minimal lines of codes, then this book is the best fit for you. Sound knowledge of machine learning and basic familiarity with Keras library would be useful.

Neural Networks with Keras Cookbook

Neural Networks with Keras Cookbook PDF Author: V Kishore Ayyadevara
Publisher: Packt Publishing Ltd
ISBN: 1789342104
Category : Computers
Languages : en
Pages : 558

Get Book Here

Book Description
Implement neural network architectures by building them from scratch for multiple real-world applications. Key FeaturesFrom scratch, build multiple neural network architectures such as CNN, RNN, LSTM in KerasDiscover tips and tricks for designing a robust neural network to solve real-world problemsGraduate from understanding the working details of neural networks and master the art of fine-tuning themBook Description This book will take you from the basics of neural networks to advanced implementations of architectures using a recipe-based approach. We will learn about how neural networks work and the impact of various hyper parameters on a network's accuracy along with leveraging neural networks for structured and unstructured data. Later, we will learn how to classify and detect objects in images. We will also learn to use transfer learning for multiple applications, including a self-driving car using Convolutional Neural Networks. We will generate images while leveraging GANs and also by performing image encoding. Additionally, we will perform text analysis using word vector based techniques. Later, we will use Recurrent Neural Networks and LSTM to implement chatbot and Machine Translation systems. Finally, you will learn about transcribing images, audio, and generating captions and also use Deep Q-learning to build an agent that plays Space Invaders game. By the end of this book, you will have developed the skills to choose and customize multiple neural network architectures for various deep learning problems you might encounter. What you will learnBuild multiple advanced neural network architectures from scratchExplore transfer learning to perform object detection and classificationBuild self-driving car applications using instance and semantic segmentationUnderstand data encoding for image, text and recommender systemsImplement text analysis using sequence-to-sequence learningLeverage a combination of CNN and RNN to perform end-to-end learningBuild agents to play games using deep Q-learningWho this book is for This intermediate-level book targets beginners and intermediate-level machine learning practitioners and data scientists who have just started their journey with neural networks. This book is for those who are looking for resources to help them navigate through the various neural network architectures; you'll build multiple architectures, with concomitant case studies ordered by the complexity of the problem. A basic understanding of Python programming and a familiarity with basic machine learning are all you need to get started with this book.

Project-Based Approach On DEEP LEARNING Using Scikit-Learn, Keras, And TensorFlow with Python GUI

Project-Based Approach On DEEP LEARNING Using Scikit-Learn, Keras, And TensorFlow with Python GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 224

Get Book Here

Book Description
In this book, implement deep learning on detecting vehicle license plates, recognizing sign language, and detecting surface crack using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting vehicle license plates using Car License Plate Detection dataset provided by Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). To perform license plate detection, these steps are taken: 1. Dataset Preparation: Extract the dataset and organize it into separate folders for images and annotations. The annotations should contain bounding box coordinates for license plate regions.; 2. Data Preprocessing: Load the images and annotations from the dataset. Preprocess the images by resizing, normalizing, or applying any other necessary transformations. Convert the annotation bounding box coordinates to the appropriate format for training.; 3. Training Data Generation: Divide the dataset into training and validation sets. Generate training data by augmenting the images and annotations (e.g., flipping, rotating, zooming). Create data generators or data loaders to efficiently load the training data.; 4. Model Development: Choose a suitable deep learning model architecture for license plate detection, such as a convolutional neural network (CNN). Use TensorFlow and Keras to develop the model architecture. Compile the model with appropriate loss functions and optimization algorithms.; 5. Model Training: Train the model using the prepared training data. Monitor the training process by tracking metrics like loss and accuracy. Adjust the hyperparameters or model architecture as needed to improve performance.; 6. Model Evaluation: Evaluate the trained model using the validation set. Calculate relevant metrics like precision, recall, and F1 score. Make any necessary adjustments to the model based on the evaluation results.; 7. License Plate Detection: Use the trained model to detect license plates in new images. Apply any post-processing techniques to refine the detected regions. Extract the license plate regions and further process them if needed. In chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform sign language recognition using Sign Language Digits Dataset. Here are the steps to perform sign language recognition using the Sign Language Digits Dataset: 1. Download the dataset from Kaggle: You can visit the Kaggle Sign Language Digits Dataset page (https://www.kaggle.com/ardamavi/sign-language-digits-dataset) and download the dataset.; 2. Extract the dataset: After downloading the dataset, extract the contents from the downloaded zip file to a suitable location on your local machine.; 3.Load the dataset: The dataset consists of two parts - images and a CSV file containing the corresponding labels. The images are stored in a folder, and the CSV file contains the image paths and labels.; 4. Preprocess the dataset: Depending on the specific requirements of your model, you may need to preprocess the dataset. This can include tasks such as resizing images, converting labels to numerical format, normalizing pixel values, or splitting the dataset into training and testing sets.; 5. Build a machine learning model: Use libraries such as TensorFlow and Keras to build a sign language recognition model. This typically involves designing the architecture of the model, compiling it with suitable loss functions and optimizers, and training the model on the preprocessed dataset.; 6. Evaluate the model: After training the model, evaluate its performance using appropriate evaluation metrics. This can help you understand how well the model is performing on the sign language recognition task.; 7. Make predictions: Once the model is trained and evaluated, you can use it to make predictions on new sign language images. Pass the image through the model, and it will predict the corresponding sign language digit. In chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting surface crack using Surface Crack Detection provided by Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). Here's a general outline of the process: Data Preparation: Start by downloading the dataset from the Kaggle link you provided. Extract the dataset and organize it into appropriate folders (e.g., training and testing folders).; Import Libraries: Begin by importing the necessary libraries, including TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, and NumPy.; Data Loading and Preprocessing: Load the images and labels from the dataset. Since the dataset may come in different formats, it's essential to understand its structure and adjust the code accordingly. Use OpenCV to read the images and Pandas to load the labels.; Data Augmentation: Perform data augmentation techniques such as rotation, flipping, and scaling to increase the diversity of the training data and prevent overfitting. You can use the ImageDataGenerator class from Keras for this purpose.; Model Building: Define your neural network architecture using the Keras API with TensorFlow backend. You can start with a simple architecture like a convolutional neural network (CNN). Experiment with different architectures to achieve better performance.; Model Compilation: Compile your model by specifying the loss function, optimizer, and evaluation metric. For a binary classification problem like crack detection, you can use binary cross-entropy as the loss function and Adam as the optimizer.; Model Training: Train your model on the prepared dataset using the fit() method. Split your data into training and validation sets using train_test_split() from Scikit-Learn. Monitor the training progress and adjust hyperparameters as needed. Model Evaluation: Evaluate the performance of your trained model on the test set. Use appropriate evaluation metrics such as accuracy, precision, recall, and F1 score. Scikit-Learn provides functions for calculating these metrics.; Model Prediction: Use the trained model to predict crack detection on new unseen images. Load the test images, preprocess them if necessary, and use the trained model to make predictions.

Python Machine Learning Cookbook

Python Machine Learning Cookbook PDF Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
ISBN: 1789800757
Category : Computers
Languages : en
Pages : 632

Get Book Here

Book Description
Discover powerful ways to effectively solve real-world machine learning problems using key libraries including scikit-learn, TensorFlow, and PyTorch Key FeaturesLearn and implement machine learning algorithms in a variety of real-life scenariosCover a range of tasks catering to supervised, unsupervised and reinforcement learning techniquesFind easy-to-follow code solutions for tackling common and not-so-common challengesBook Description This eagerly anticipated second edition of the popular Python Machine Learning Cookbook will enable you to adopt a fresh approach to dealing with real-world machine learning and deep learning tasks. With the help of over 100 recipes, you will learn to build powerful machine learning applications using modern libraries from the Python ecosystem. The book will also guide you on how to implement various machine learning algorithms for classification, clustering, and recommendation engines, using a recipe-based approach. With emphasis on practical solutions, dedicated sections in the book will help you to apply supervised and unsupervised learning techniques to real-world problems. Toward the concluding chapters, you will get to grips with recipes that teach you advanced techniques including reinforcement learning, deep neural networks, and automated machine learning. By the end of this book, you will be equipped with the skills you need to apply machine learning techniques and leverage the full capabilities of the Python ecosystem through real-world examples. What you will learnUse predictive modeling and apply it to real-world problemsExplore data visualization techniques to interact with your dataLearn how to build a recommendation engineUnderstand how to interact with text data and build models to analyze itWork with speech data and recognize spoken words using Hidden Markov ModelsGet well versed with reinforcement learning, automated ML, and transfer learningWork with image data and build systems for image recognition and biometric face recognitionUse deep neural networks to build an optical character recognition systemWho this book is for This book is for data scientists, machine learning developers, deep learning enthusiasts and Python programmers who want to solve real-world challenges using machine-learning techniques and algorithms. If you are facing challenges at work and want ready-to-use code solutions to cover key tasks in machine learning and the deep learning domain, then this book is what you need. Familiarity with Python programming and machine learning concepts will be useful.

Generative Adversarial Networks Projects

Generative Adversarial Networks Projects PDF Author: Kailash Ahirwar
Publisher: Packt Publishing Ltd
ISBN: 1789134196
Category : Mathematics
Languages : en
Pages : 310

Get Book Here

Book Description
Explore various Generative Adversarial Network architectures using the Python ecosystem Key FeaturesUse different datasets to build advanced projects in the Generative Adversarial Network domainImplement projects ranging from generating 3D shapes to a face aging applicationExplore the power of GANs to contribute in open source research and projectsBook Description Generative Adversarial Networks (GANs) have the potential to build next-generation models, as they can mimic any distribution of data. Major research and development work is being undertaken in this field since it is one of the rapidly growing areas of machine learning. This book will test unsupervised techniques for training neural networks as you build seven end-to-end projects in the GAN domain. Generative Adversarial Network Projects begins by covering the concepts, tools, and libraries that you will use to build efficient projects. You will also use a variety of datasets for the different projects covered in the book. The level of complexity of the operations required increases with every chapter, helping you get to grips with using GANs. You will cover popular approaches such as 3D-GAN, DCGAN, StackGAN, and CycleGAN, and you’ll gain an understanding of the architecture and functioning of generative models through their practical implementation. By the end of this book, you will be ready to build, train, and optimize your own end-to-end GAN models at work or in your own projects. What you will learnTrain a network on the 3D ShapeNet dataset to generate realistic shapesGenerate anime characters using the Keras implementation of DCGANImplement an SRGAN network to generate high-resolution imagesTrain Age-cGAN on Wiki-Cropped images to improve face verificationUse Conditional GANs for image-to-image translationUnderstand the generator and discriminator implementations of StackGAN in KerasWho this book is for If you’re a data scientist, machine learning developer, deep learning practitioner, or AI enthusiast looking for a project guide to test your knowledge and expertise in building real-world GANs models, this book is for you.

Python Deep Learning Projects

Python Deep Learning Projects PDF Author: Matthew Lamons
Publisher: Packt Publishing Ltd
ISBN: 1789134757
Category : Computers
Languages : en
Pages : 465

Get Book Here

Book Description
Insightful projects to master deep learning and neural network architectures using Python and Keras Key FeaturesExplore deep learning across computer vision, natural language processing (NLP), and image processingDiscover best practices for the training of deep neural networks and their deploymentAccess popular deep learning models as well as widely used neural network architecturesBook Description Deep learning has been gradually revolutionizing every field of artificial intelligence, making application development easier. Python Deep Learning Projects imparts all the knowledge needed to implement complex deep learning projects in the field of computational linguistics and computer vision. Each of these projects is unique, helping you progressively master the subject. You’ll learn how to implement a text classifier system using a recurrent neural network (RNN) model and optimize it to understand the shortcomings you might experience while implementing a simple deep learning system. Similarly, you’ll discover how to develop various projects, including word vector representation, open domain question answering, and building chatbots using seq-to-seq models and language modeling. In addition to this, you’ll cover advanced concepts, such as regularization, gradient clipping, gradient normalization, and bidirectional RNNs, through a series of engaging projects. By the end of this book, you will have gained knowledge to develop your own deep learning systems in a straightforward way and in an efficient way What you will learnSet up a deep learning development environment on Amazon Web Services (AWS)Apply GPU-powered instances as well as the deep learning AMIImplement seq-to-seq networks for modeling natural language processing (NLP)Develop an end-to-end speech recognition systemBuild a system for pixel-wise semantic labeling of an imageCreate a system that generates images and their regionsWho this book is for Python Deep Learning Projects is for you if you want to get insights into deep learning, data science, and artificial intelligence. This book is also for those who want to break into deep learning and develop their own AI projects. It is assumed that you have sound knowledge of Python programming

Mastering TensorFlow 2.x

Mastering TensorFlow 2.x PDF Author: Rajdeep
Publisher: BPB Publications
ISBN: 9391392229
Category : Antiques & Collectibles
Languages : en
Pages : 353

Get Book Here

Book Description
Work with TensorFlow and Keras for real performance of deep learning KEY FEATURES ● Combines theory and implementation with in-detail use-cases. ● Coverage on both, TensorFlow 1.x and 2.x with elaborated concepts. ● Exposure to Distributed Training, GANs and Reinforcement Learning. DESCRIPTION Mastering TensorFlow 2.x is a must to read and practice if you are interested in building various kinds of neural networks with high level TensorFlow and Keras APIs. The book begins with the basics of TensorFlow and neural network concepts, and goes into specific topics like image classification, object detection, time series forecasting and Generative Adversarial Networks. While we are practicing TensorFlow 2.6 in this book, the version of Tensorflow will change with time; however you can still use this book to witness how Tensorflow outperforms. This book includes the use of a local Jupyter notebook and the use of Google Colab in various use cases including GAN and Image classification tasks. While you explore the performance of TensorFlow, the book also covers various concepts and in-detail explanations around reinforcement learning, model optimization and time series models. WHAT YOU WILL LEARN ● Getting started with Tensorflow 2.x and basic building blocks. ● Get well versed in functional programming with TensorFlow. ● Practice Time Series analysis along with strong understanding of concepts. ● Get introduced to use of TensorFlow in Reinforcement learning and Generative Adversarial Networks. ● Train distributed models and how to optimize them. WHO THIS BOOK IS FOR This book is designed for machine learning engineers, NLP engineers and deep learning practitioners who want to utilize the performance of TensorFlow in their ML and AI projects. Readers are expected to have some familiarity with Tensorflow and the basics of machine learning would be helpful. TABLE OF CONTENTS 1. Getting started with TensorFlow 2.x 2. Machine Learning with TensorFlow 2.x 3. Keras based APIs 4. Convolutional Neural Networks in Tensorflow 5. Text Processing with TensorFlow 2.x 6. Time Series Forecasting with TensorFlow 2.x 7. Distributed Training and DataInput pipelines 8. Reinforcement Learning 9. Model Optimization 10. Generative Adversarial Networks

Neural Network Projects with Python

Neural Network Projects with Python PDF Author: James Loy
Publisher: Packt Publishing Ltd
ISBN: 1789133319
Category : Computers
Languages : en
Pages : 301

Get Book Here

Book Description
Build your Machine Learning portfolio by creating 6 cutting-edge Artificial Intelligence projects using neural networks in Python Key FeaturesDiscover neural network architectures (like CNN and LSTM) that are driving recent advancements in AIBuild expert neural networks in Python using popular libraries such as KerasIncludes projects such as object detection, face identification, sentiment analysis, and moreBook Description Neural networks are at the core of recent AI advances, providing some of the best resolutions to many real-world problems, including image recognition, medical diagnosis, text analysis, and more. This book goes through some basic neural network and deep learning concepts, as well as some popular libraries in Python for implementing them. It contains practical demonstrations of neural networks in domains such as fare prediction, image classification, sentiment analysis, and more. In each case, the book provides a problem statement, the specific neural network architecture required to tackle that problem, the reasoning behind the algorithm used, and the associated Python code to implement the solution from scratch. In the process, you will gain hands-on experience with using popular Python libraries such as Keras to build and train your own neural networks from scratch. By the end of this book, you will have mastered the different neural network architectures and created cutting-edge AI projects in Python that will immediately strengthen your machine learning portfolio. What you will learnLearn various neural network architectures and its advancements in AIMaster deep learning in Python by building and training neural networkMaster neural networks for regression and classificationDiscover convolutional neural networks for image recognitionLearn sentiment analysis on textual data using Long Short-Term MemoryBuild and train a highly accurate facial recognition security systemWho this book is for This book is a perfect match for data scientists, machine learning engineers, and deep learning enthusiasts who wish to create practical neural network projects in Python. Readers should already have some basic knowledge of machine learning and neural networks.

Deep Learning with TensorFlow 2 and Keras

Deep Learning with TensorFlow 2 and Keras PDF Author: Antonio Gulli
Publisher: Packt Publishing Ltd
ISBN: 1838827722
Category : Computers
Languages : en
Pages : 647

Get Book Here

Book Description
Build machine and deep learning systems with the newly released TensorFlow 2 and Keras for the lab, production, and mobile devices Key FeaturesIntroduces and then uses TensorFlow 2 and Keras right from the startTeaches key machine and deep learning techniquesUnderstand the fundamentals of deep learning and machine learning through clear explanations and extensive code samplesBook Description Deep Learning with TensorFlow 2 and Keras, Second Edition teaches neural networks and deep learning techniques alongside TensorFlow (TF) and Keras. You’ll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow is the machine learning library of choice for professional applications, while Keras offers a simple and powerful Python API for accessing TensorFlow. TensorFlow 2 provides full Keras integration, making advanced machine learning easier and more convenient than ever before. This book also introduces neural networks with TensorFlow, runs through the main applications (regression, ConvNets (CNNs), GANs, RNNs, NLP), covers two working example apps, and then dives into TF in production, TF mobile, and using TensorFlow with AutoML. What you will learnBuild machine learning and deep learning systems with TensorFlow 2 and the Keras APIUse Regression analysis, the most popular approach to machine learningUnderstand ConvNets (convolutional neural networks) and how they are essential for deep learning systems such as image classifiersUse GANs (generative adversarial networks) to create new data that fits with existing patternsDiscover RNNs (recurrent neural networks) that can process sequences of input intelligently, using one part of a sequence to correctly interpret anotherApply deep learning to natural human language and interpret natural language texts to produce an appropriate responseTrain your models on the cloud and put TF to work in real environmentsExplore how Google tools can automate simple ML workflows without the need for complex modelingWho this book is for This book is for Python developers and data scientists who want to build machine learning and deep learning systems with TensorFlow. This book gives you the theory and practice required to use Keras, TensorFlow 2, and AutoML to build machine learning systems. Some knowledge of machine learning is expected.

Deep Learning with TensorFlow and Keras

Deep Learning with TensorFlow and Keras PDF Author: Amita Kapoor
Publisher: Packt Publishing Ltd
ISBN: 1803245719
Category : Computers
Languages : en
Pages : 699

Get Book Here

Book Description
Build cutting edge machine and deep learning systems for the lab, production, and mobile devices Key FeaturesUnderstand the fundamentals of deep learning and machine learning through clear explanations and extensive code samplesImplement graph neural networks, transformers using Hugging Face and TensorFlow Hub, and joint and contrastive learningLearn cutting-edge machine and deep learning techniquesBook Description Deep Learning with TensorFlow and Keras teaches you neural networks and deep learning techniques using TensorFlow (TF) and Keras. You'll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow 2.x focuses on simplicity and ease of use, with updates like eager execution, intuitive higher-level APIs based on Keras, and flexible model building on any platform. This book uses the latest TF 2.0 features and libraries to present an overview of supervised and unsupervised machine learning models and provides a comprehensive analysis of deep learning and reinforcement learning models using practical examples for the cloud, mobile, and large production environments. This book also shows you how to create neural networks with TensorFlow, runs through popular algorithms (regression, convolutional neural networks (CNNs), transformers, generative adversarial networks (GANs), recurrent neural networks (RNNs), natural language processing (NLP), and graph neural networks (GNNs)), covers working example apps, and then dives into TF in production, TF mobile, and TensorFlow with AutoML. What you will learnLearn how to use the popular GNNs with TensorFlow to carry out graph mining tasksDiscover the world of transformers, from pretraining to fine-tuning to evaluating themApply self-supervised learning to natural language processing, computer vision, and audio signal processingCombine probabilistic and deep learning models using TensorFlow ProbabilityTrain your models on the cloud and put TF to work in real environmentsBuild machine learning and deep learning systems with TensorFlow 2.x and the Keras APIWho this book is for This hands-on machine learning book is for Python developers and data scientists who want to build machine learning and deep learning systems with TensorFlow. This book gives you the theory and practice required to use Keras, TensorFlow, and AutoML to build machine learning systems. Some machine learning knowledge would be useful. We don't assume TF knowledge.