Jordan Canonical Form

Jordan Canonical Form PDF Author: Steven Weintraub
Publisher: Springer Nature
ISBN: 3031023986
Category : Mathematics
Languages : en
Pages : 96

Get Book Here

Book Description
Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over the field of complex numbers C, and let T : V → V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: Let A be a square matrix with complex entries. Then A is similar to a matrix J in Jordan Canonical Form, i.e., there is an invertible matrix P and a matrix J in Jordan Canonical Form with A = PJP-1. We further present an algorithm to find P and J, assuming that one can factor the characteristic polynomial of A. In developing this algorithm we introduce the eigenstructure picture (ESP) of a matrix, a pictorial representation that makes JCF clear. The ESP of A determines J, and a refinement, the labeled eigenstructure picture (lESP) of A, determines P as well. We illustrate this algorithm with copious examples, and provide numerous exercises for the reader. Table of Contents: Fundamentals on Vector Spaces and Linear Transformations / The Structure of a Linear Transformation / An Algorithm for Jordan Canonical Form and Jordan Basis

Jordan Canonical Form

Jordan Canonical Form PDF Author: Steven Weintraub
Publisher: Springer Nature
ISBN: 3031023986
Category : Mathematics
Languages : en
Pages : 96

Get Book Here

Book Description
Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over the field of complex numbers C, and let T : V → V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: Let A be a square matrix with complex entries. Then A is similar to a matrix J in Jordan Canonical Form, i.e., there is an invertible matrix P and a matrix J in Jordan Canonical Form with A = PJP-1. We further present an algorithm to find P and J, assuming that one can factor the characteristic polynomial of A. In developing this algorithm we introduce the eigenstructure picture (ESP) of a matrix, a pictorial representation that makes JCF clear. The ESP of A determines J, and a refinement, the labeled eigenstructure picture (lESP) of A, determines P as well. We illustrate this algorithm with copious examples, and provide numerous exercises for the reader. Table of Contents: Fundamentals on Vector Spaces and Linear Transformations / The Structure of a Linear Transformation / An Algorithm for Jordan Canonical Form and Jordan Basis

Matrix Theory

Matrix Theory PDF Author: Robert Piziak
Publisher: CRC Press
ISBN: 1584886250
Category : Mathematics
Languages : en
Pages : 570

Get Book Here

Book Description
In 1990, the National Science Foundation recommended that every college mathematics curriculum should include a second course in linear algebra. In answer to this recommendation, Matrix Theory: From Generalized Inverses to Jordan Form provides the material for a second semester of linear algebra that probes introductory linear algebra concepts while also exploring topics not typically covered in a sophomore-level class. Tailoring the material to advanced undergraduate and beginning graduate students, the authors offer instructors flexibility in choosing topics from the book. The text first focuses on the central problem of linear algebra: solving systems of linear equations. It then discusses LU factorization, derives Sylvester's rank formula, introduces full-rank factorization, and describes generalized inverses. After discussions on norms, QR factorization, and orthogonality, the authors prove the important spectral theorem. They also highlight the primary decomposition theorem, Schur's triangularization theorem, singular value decomposition, and the Jordan canonical form theorem. The book concludes with a chapter on multilinear algebra. With this classroom-tested text students can delve into elementary linear algebra ideas at a deeper level and prepare for further study in matrix theory and abstract algebra.

The Mathematics of Frobenius in Context

The Mathematics of Frobenius in Context PDF Author: Thomas Hawkins
Publisher: Springer Science & Business Media
ISBN: 1461463335
Category : Mathematics
Languages : en
Pages : 698

Get Book Here

Book Description
Frobenius made many important contributions to mathematics in the latter part of the 19th century. Hawkins here focuses on his work in linear algebra and its relationship with the work of Burnside, Cartan, and Molien, and its extension by Schur and Brauer. He also discusses the Berlin school of mathematics and the guiding force of Weierstrass in that school, as well as the fundamental work of d'Alembert, Lagrange, and Laplace, and of Gauss, Eisenstein and Cayley that laid the groundwork for Frobenius's work in linear algebra. The book concludes with a discussion of Frobenius's contribution to the theory of stochastic matrices.

An Introduction to the Theory of Canonical Matrices

An Introduction to the Theory of Canonical Matrices PDF Author: H. W. Turnbull
Publisher: Courier Corporation
ISBN: 0486153460
Category : Mathematics
Languages : en
Pages : 222

Get Book Here

Book Description
Elementary transformations and bilinear and quadratic forms; canonical reduction of equivalent matrices; subgroups of the group of equivalent transformations; and rational and classical canonical forms. 1952 edition. 275 problems.

Linear and Multilinear Algebra

Linear and Multilinear Algebra PDF Author: Ralph Abraham
Publisher:
ISBN:
Category : Algebras, Linear
Languages : en
Pages : 128

Get Book Here

Book Description


Basic Algebra

Basic Algebra PDF Author: Anthony W. Knapp
Publisher: Springer Science & Business Media
ISBN: 0817645292
Category : Mathematics
Languages : en
Pages : 762

Get Book Here

Book Description
Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Together, the two books give the reader a global view of algebra and its role in mathematics as a whole. The presentation includes blocks of problems that introduce additional topics and applications to science and engineering to guide further study. Many examples and hundreds of problems are included, along with a separate 90-page section giving hints or complete solutions for most of the problems.

Advanced Topics in Linear Algebra

Advanced Topics in Linear Algebra PDF Author: Kevin O'Meara
Publisher: OUP USA
ISBN: 0199793735
Category : Mathematics
Languages : en
Pages : 423

Get Book Here

Book Description
This book develops the Weyr matrix canonical form, a largely unknown cousin of the Jordan form. It explores novel applications, including include matrix commutativity problems, approximate simultaneous diagonalization, and algebraic geometry. Module theory and algebraic geometry are employed but with self-contained accounts.

Matrix Methods

Matrix Methods PDF Author: Richard Bronson
Publisher: Academic Press
ISBN: 1483216616
Category : Mathematics
Languages : en
Pages : 301

Get Book Here

Book Description
Matrix Methods: An Introduction is a nine-chapter text that emphasizes the methodological aspects of mathematical matrices. This book is intended for an introductory course in matrices similar to those given to sophomore and junior engineering students at Fairleigh Dickinson University. The first five chapters deal with the elementary aspects of matrices, including their definition, determinants, method of inversion, simultaneous linear equations, eigenvalues, and eigenvectors. The remaining chapters explore the materials of fundamental importance to both engineers and scientists. These chapters discuss the principles of matrix calculus, linear differential equations, Jordan canonical forms, and special matrices. A set of exercises is provided at the end of each section, which is basically routine in nature and serves primarily to enhance the reader's ability to use the methods just presented. On occasion, problems are assigned that will extend or complete topics previously introduced. This book is intended primarily for science, engineering, and applied mathematics students.

Matrix Analysis

Matrix Analysis PDF Author: Roger A. Horn
Publisher: Cambridge University Press
ISBN: 9780521386326
Category : Mathematics
Languages : en
Pages : 580

Get Book Here

Book Description
Matrix Analysis presents the classical and recent results for matrix analysis that have proved to be important to applied mathematics.

Linear Algebra and Matrices

Linear Algebra and Matrices PDF Author: Shmuel Friedland
Publisher: SIAM
ISBN: 161197514X
Category : Mathematics
Languages : en
Pages : 301

Get Book Here

Book Description
This introductory textbook grew out of several courses in linear algebra given over more than a decade and includes such helpful material as constructive discussions about the motivation of fundamental concepts, many worked-out problems in each chapter, and topics rarely covered in typical linear algebra textbooks.The authors use abstract notions and arguments to give the complete proof of the Jordan canonical form and, more generally, the rational canonical form of square matrices over fields. They also provide the notion of tensor products of vector spaces and linear transformations. Matrices are treated in depth, with coverage of the stability of matrix iterations, the eigenvalue properties of linear transformations in inner product spaces, singular value decomposition, and min-max characterizations of Hermitian matrices and nonnegative irreducible matrices. The authors show the many topics and tools encompassed by modern linear algebra to emphasize its relationship to other areas of mathematics. The text is intended for advanced undergraduate students. Beginning graduate students seeking an introduction to the subject will also find it of interest.