Octonions, Jordan Algebras and Exceptional Groups

Octonions, Jordan Algebras and Exceptional Groups PDF Author: Tonny A. Springer
Publisher: Springer
ISBN: 3662126222
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description
The 1963 Göttingen notes of T. A. Springer are well known in the field but have been unavailable for some time. This book is a translation of those notes, completely updated and revised. The part of the book dealing with the algebraic structures is on a fairly elementary level, presupposing basic results from algebra.

Octonions, Jordan Algebras and Exceptional Groups

Octonions, Jordan Algebras and Exceptional Groups PDF Author: Tonny A. Springer
Publisher: Springer
ISBN: 3662126222
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description
The 1963 Göttingen notes of T. A. Springer are well known in the field but have been unavailable for some time. This book is a translation of those notes, completely updated and revised. The part of the book dealing with the algebraic structures is on a fairly elementary level, presupposing basic results from algebra.

A Taste of Jordan Algebras

A Taste of Jordan Algebras PDF Author: Kevin McCrimmon
Publisher: Springer Science & Business Media
ISBN: 0387217967
Category : Mathematics
Languages : en
Pages : 584

Get Book Here

Book Description
This book describes the history of Jordan algebras and describes in full mathematical detail the recent structure theory for Jordan algebras of arbitrary dimension due to Efim Zel'manov. Jordan algebras crop up in many surprising settings, and find application to a variety of mathematical areas. No knowledge is required beyond standard first-year graduate algebra courses.

Jordan Algebras and Algebraic Groups

Jordan Algebras and Algebraic Groups PDF Author: Tonny A. Springer
Publisher: Springer Science & Business Media
ISBN: 9783540636328
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
From the reviews: "This book presents an important and novel approach to Jordan algebras. [...] Springer's work will be of service to research workers familiar with linear algebraic groups who find they need to know something about Jordan algebras and will provide Jordan algebraists with new techniques and a new approach to finite-dimensional algebras over fields." American Scientist

Structure and Representations of Jordan Algebras

Structure and Representations of Jordan Algebras PDF Author: Nathan Jacobson
Publisher: American Mathematical Soc.
ISBN: 082184640X
Category : Mathematics
Languages : en
Pages : 464

Get Book Here

Book Description
The theory of Jordan algebras has played important roles behind the scenes of several areas of mathematics. Jacobson's book has long been the definitive treatment of the subject. It covers foundational material, structure theory, and representation theory for Jordan algebras. Of course, there are immediate connections with Lie algebras, which Jacobson details in Chapter 8. Of particular continuing interest is the discussion of exceptional Jordan algebras, which serve to explain the exceptional Lie algebras and Lie groups. Jordan algebras originally arose in the attempts by Jordan, von Neumann, and Wigner to formulate the foundations of quantum mechanics. They are still useful and important in modern mathematical physics, as well as in Lie theory, geometry, and certain areas of analysis.

Jordan Structures in Lie Algebras

Jordan Structures in Lie Algebras PDF Author: Antonio Fernández López
Publisher:
ISBN: 9781470453626
Category :
Languages : en
Pages : 314

Get Book Here

Book Description
This book explores applications of Jordan theory to the theory of Lie algebras. It begins with the general theory of nonassociative algebras and of Lie algebras and then focuses on properties of Jordan elements of special types. Then it proceeds to the core of the book, in which the author explains how properties of the Jordan algebra attached to a Jordan element of a Lie algebra can be used to reveal properties of the Lie algebra itself. One of the special features of this book is that it carefully explains Zelmanov's seminal results on infinite-dimensional Lie algebras from this point of vie.

Geometry of State Spaces of Operator Algebras

Geometry of State Spaces of Operator Algebras PDF Author: Erik M. Alfsen
Publisher: Springer Science & Business Media
ISBN: 1461200199
Category : Mathematics
Languages : en
Pages : 470

Get Book Here

Book Description
In this book we give a complete geometric description of state spaces of operator algebras, Jordan as well as associative. That is, we give axiomatic characterizations of those convex sets that are state spaces of C*-algebras and von Neumann algebras, together with such characterizations for the normed Jordan algebras called JB-algebras and JBW-algebras. These non associative algebras generalize C*-algebras and von Neumann algebras re spectively, and the characterization of their state spaces is not only of interest in itself, but is also an important intermediate step towards the characterization of the state spaces of the associative algebras. This book gives a complete and updated presentation of the character ization theorems of [10]' [11] and [71]. Our previous book State spaces of operator algebras: basic theory, orientations and C*-products, referenced as [AS] in the sequel, gives an account of the necessary prerequisites on C*-algebras and von Neumann algebras, as well as a discussion of the key notion of orientations of state spaces. For the convenience of the reader, we have summarized these prerequisites in an appendix which contains all relevant definitions and results (listed as (AI), (A2), ... ), with reference back to [AS] for proofs, so that this book is self-contained.

An Introduction to Nonassociative Algebras

An Introduction to Nonassociative Algebras PDF Author: Richard D. Schafer
Publisher: Courier Dover Publications
ISBN: 0486164179
Category : Mathematics
Languages : en
Pages : 177

Get Book Here

Book Description
Concise graduate-level introductory study presents some of the important ideas and results in the theory of nonassociative algebras. Places particular emphasis on alternative and (commutative) Jordan algebras. 1966 edition.

Finite-Dimensional Division Algebras over Fields

Finite-Dimensional Division Algebras over Fields PDF Author: Nathan Jacobson
Publisher: Springer Science & Business Media
ISBN: 3642024297
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
Here, the eminent algebraist, Nathan Jacobsen, concentrates on those algebras that have an involution. Although they appear in many contexts, these algebras first arose in the study of the so-called "multiplication algebras of Riemann matrices". Of particular interest are the Jordan algebras determined by such algebras, and thus their structure is discussed in detail. Two important concepts also dealt with are the universal enveloping algebras and the reduced norm. However, the largest part of the book is the fifth chapter, which focuses on involutorial simple algebras of finite dimension over a field.

Encyclopaedia of Mathematics

Encyclopaedia of Mathematics PDF Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 9400959915
Category : Mathematics
Languages : en
Pages : 555

Get Book Here

Book Description
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.

Algebras, Representations and Applications

Algebras, Representations and Applications PDF Author: V. Futorny
Publisher: American Mathematical Soc.
ISBN: 0821846523
Category : Mathematics
Languages : en
Pages : 299

Get Book Here

Book Description
This volume contains contributions from the conference on "Algebras, Representations and Applications" (Maresias, Brazil, August 26-September 1, 2007), in honor of Ivan Shestakov's 60th birthday. The collection of papers presented here is of great interest to graduate students and researchers working in the theory of Lie and Jordan algebras and superalgebras and their representations, Hopf algebras, Poisson algebras, Quantum Groups, Group Rings and other topics.