Author: Scott Burk
Publisher: CRC Press
ISBN: 1000433986
Category : Business & Economics
Languages : en
Pages : 299
Book Description
Up to 70% and even more of corporate Analytics Efforts fail!!! Even after these corporations have made very large investments, in time, talent, and money, in developing what they thought were good data and analytics programs. Why? Because the executives and decision makers and the entire analytics team have not considered the most important aspect of making these analytics efforts successful. In this Book II of "It’s All Analytics!" series, we describe two primary things: 1) What this "most important aspect" consists of, and 2) How to get this "most important aspect" at the center of the analytics effort and thus make your analytics program successful. This Book II in the series is divided into three main parts: Part I, Organizational Design for Success, discusses ....... The need for a complete company / organizational Alignment of the entire company and its analytics team for making its analytics successful. This means attention to the culture – the company culture culture!!! To be successful, the CEO’s and Decision Makers of a company / organization must be fully cognizant of the cultural focus on ‘establishing a center of excellence in analytics’. Simply, "culture – company culture" is the most important aspect of a successful analytics program. The focus must be on innovation, as this is needed by the analytics team to develop successful algorithms that will lead to greater company efficiency and increased profits. Part II, Data Design for Success, discusses ..... Data is the cornerstone of success with analytics. You can have the best analytics algorithms and models available, but if you do not have good data, efforts will at best be mediocre if not a complete failure. This Part II also goes further into data with descriptions of things like Volatile Data Memory Storage and Non-Volatile Data Memory Storage, in addition to things like data structures and data formats, plus considering things like Cluster Computing, Data Swamps, Muddy Data, Data Marts, Enterprise Data Warehouse, Data Reservoirs, and Analytic Sandboxes, and additionally Data Virtualization, Curated Data, Purchased Data, Nascent & Future Data, Supplemental Data, Meaningful Data, GIS (Geographic Information Systems) & Geo Analytics Data, Graph Databases, and Time Series Databases. Part II also considers Data Governance including Data Integrity, Data Security, Data Consistency, Data Confidence, Data Leakage, Data Distribution, and Data Literacy. Part III, Analytics Technology Design for Success, discusses .... Analytics Maturity and aspects of this maturity, like Exploratory Data Analysis, Data Preparation, Feature Engineering, Building Models, Model Evaluation, Model Selection, and Model Deployment. Part III also goes into the nuts and bolts of modern predictive analytics, discussing such terms as AI = Artificial Intelligence, Machine Learning, Deep Learning, and the more traditional aspects of analytics that feed into modern analytics like Statistics, Forecasting, Optimization, and Simulation. Part III also goes into how to Communicate and Act upon Analytics, which includes building a successful Analytics Culture within your company / organization. All-in-all, if your company or organization needs to be successful using analytics, this book will give you the basics of what you need to know to make it happen.
It's All Analytics - Part II
Author: Scott Burk
Publisher: CRC Press
ISBN: 1000433986
Category : Business & Economics
Languages : en
Pages : 299
Book Description
Up to 70% and even more of corporate Analytics Efforts fail!!! Even after these corporations have made very large investments, in time, talent, and money, in developing what they thought were good data and analytics programs. Why? Because the executives and decision makers and the entire analytics team have not considered the most important aspect of making these analytics efforts successful. In this Book II of "It’s All Analytics!" series, we describe two primary things: 1) What this "most important aspect" consists of, and 2) How to get this "most important aspect" at the center of the analytics effort and thus make your analytics program successful. This Book II in the series is divided into three main parts: Part I, Organizational Design for Success, discusses ....... The need for a complete company / organizational Alignment of the entire company and its analytics team for making its analytics successful. This means attention to the culture – the company culture culture!!! To be successful, the CEO’s and Decision Makers of a company / organization must be fully cognizant of the cultural focus on ‘establishing a center of excellence in analytics’. Simply, "culture – company culture" is the most important aspect of a successful analytics program. The focus must be on innovation, as this is needed by the analytics team to develop successful algorithms that will lead to greater company efficiency and increased profits. Part II, Data Design for Success, discusses ..... Data is the cornerstone of success with analytics. You can have the best analytics algorithms and models available, but if you do not have good data, efforts will at best be mediocre if not a complete failure. This Part II also goes further into data with descriptions of things like Volatile Data Memory Storage and Non-Volatile Data Memory Storage, in addition to things like data structures and data formats, plus considering things like Cluster Computing, Data Swamps, Muddy Data, Data Marts, Enterprise Data Warehouse, Data Reservoirs, and Analytic Sandboxes, and additionally Data Virtualization, Curated Data, Purchased Data, Nascent & Future Data, Supplemental Data, Meaningful Data, GIS (Geographic Information Systems) & Geo Analytics Data, Graph Databases, and Time Series Databases. Part II also considers Data Governance including Data Integrity, Data Security, Data Consistency, Data Confidence, Data Leakage, Data Distribution, and Data Literacy. Part III, Analytics Technology Design for Success, discusses .... Analytics Maturity and aspects of this maturity, like Exploratory Data Analysis, Data Preparation, Feature Engineering, Building Models, Model Evaluation, Model Selection, and Model Deployment. Part III also goes into the nuts and bolts of modern predictive analytics, discussing such terms as AI = Artificial Intelligence, Machine Learning, Deep Learning, and the more traditional aspects of analytics that feed into modern analytics like Statistics, Forecasting, Optimization, and Simulation. Part III also goes into how to Communicate and Act upon Analytics, which includes building a successful Analytics Culture within your company / organization. All-in-all, if your company or organization needs to be successful using analytics, this book will give you the basics of what you need to know to make it happen.
Publisher: CRC Press
ISBN: 1000433986
Category : Business & Economics
Languages : en
Pages : 299
Book Description
Up to 70% and even more of corporate Analytics Efforts fail!!! Even after these corporations have made very large investments, in time, talent, and money, in developing what they thought were good data and analytics programs. Why? Because the executives and decision makers and the entire analytics team have not considered the most important aspect of making these analytics efforts successful. In this Book II of "It’s All Analytics!" series, we describe two primary things: 1) What this "most important aspect" consists of, and 2) How to get this "most important aspect" at the center of the analytics effort and thus make your analytics program successful. This Book II in the series is divided into three main parts: Part I, Organizational Design for Success, discusses ....... The need for a complete company / organizational Alignment of the entire company and its analytics team for making its analytics successful. This means attention to the culture – the company culture culture!!! To be successful, the CEO’s and Decision Makers of a company / organization must be fully cognizant of the cultural focus on ‘establishing a center of excellence in analytics’. Simply, "culture – company culture" is the most important aspect of a successful analytics program. The focus must be on innovation, as this is needed by the analytics team to develop successful algorithms that will lead to greater company efficiency and increased profits. Part II, Data Design for Success, discusses ..... Data is the cornerstone of success with analytics. You can have the best analytics algorithms and models available, but if you do not have good data, efforts will at best be mediocre if not a complete failure. This Part II also goes further into data with descriptions of things like Volatile Data Memory Storage and Non-Volatile Data Memory Storage, in addition to things like data structures and data formats, plus considering things like Cluster Computing, Data Swamps, Muddy Data, Data Marts, Enterprise Data Warehouse, Data Reservoirs, and Analytic Sandboxes, and additionally Data Virtualization, Curated Data, Purchased Data, Nascent & Future Data, Supplemental Data, Meaningful Data, GIS (Geographic Information Systems) & Geo Analytics Data, Graph Databases, and Time Series Databases. Part II also considers Data Governance including Data Integrity, Data Security, Data Consistency, Data Confidence, Data Leakage, Data Distribution, and Data Literacy. Part III, Analytics Technology Design for Success, discusses .... Analytics Maturity and aspects of this maturity, like Exploratory Data Analysis, Data Preparation, Feature Engineering, Building Models, Model Evaluation, Model Selection, and Model Deployment. Part III also goes into the nuts and bolts of modern predictive analytics, discussing such terms as AI = Artificial Intelligence, Machine Learning, Deep Learning, and the more traditional aspects of analytics that feed into modern analytics like Statistics, Forecasting, Optimization, and Simulation. Part III also goes into how to Communicate and Act upon Analytics, which includes building a successful Analytics Culture within your company / organization. All-in-all, if your company or organization needs to be successful using analytics, this book will give you the basics of what you need to know to make it happen.
It's All Analytics, Part III
Author: Scott Burk
Publisher: CRC Press
ISBN: 1000928446
Category : Business & Economics
Languages : en
Pages : 248
Book Description
Professionals are challenged each day by a changing landscape of technology and terminology. In recent history, especially the last 25 years, there has been an explosion of terms and methods born that automate and improve decision-making and operations. One term, called "analytics," is an overarching description of a compilation of methodologies. But artificial intelligence (AI), statistics, decision science, and optimization, which have been around for decades, have resurged. Also, things like business intelligence, online analytical processing (OLAP) and many, many more have been born or reborn. How is someone to make sense of all this methodology, terminology? Extending on the foundations introduced in the first book, this book illustrates how professionals in healthcare, business, and government are applying these disciplines, methods, and technologies. The goal of this book is to get leaders and practitioners to start thinking about how they may deploy techniques outside their function or industry into their domain. Application of modern technology into new areas is one of the fastest, most effective ways to improve results. By providing a rich set of examples, this book fosters creativity in the application and use of AI and analytics in innovative ways.
Publisher: CRC Press
ISBN: 1000928446
Category : Business & Economics
Languages : en
Pages : 248
Book Description
Professionals are challenged each day by a changing landscape of technology and terminology. In recent history, especially the last 25 years, there has been an explosion of terms and methods born that automate and improve decision-making and operations. One term, called "analytics," is an overarching description of a compilation of methodologies. But artificial intelligence (AI), statistics, decision science, and optimization, which have been around for decades, have resurged. Also, things like business intelligence, online analytical processing (OLAP) and many, many more have been born or reborn. How is someone to make sense of all this methodology, terminology? Extending on the foundations introduced in the first book, this book illustrates how professionals in healthcare, business, and government are applying these disciplines, methods, and technologies. The goal of this book is to get leaders and practitioners to start thinking about how they may deploy techniques outside their function or industry into their domain. Application of modern technology into new areas is one of the fastest, most effective ways to improve results. By providing a rich set of examples, this book fosters creativity in the application and use of AI and analytics in innovative ways.
It's All Analytics!
Author: Scott Burk
Publisher: CRC Press
ISBN: 100006722X
Category : Medical
Languages : en
Pages : 194
Book Description
It's All Analytics! The Foundations of AI, Big Data and Data Science Landscape for Professionals in Healthcare, Business, and Government (978-0-367-35968-3, 325690) Professionals are challenged each day by a changing landscape of technology and terminology. In recent history, especially in the last 25 years, there has been an explosion of terms and methods that automate and improve decision-making and operations. One term, "analytics," is an overarching description of a compilation of methodologies. But AI (artificial intelligence), statistics, decision science, and optimization, which have been around for decades, have resurged. Also, things like business intelligence, online analytical processing (OLAP) and many, many more have been born or reborn. How is someone to make sense of all this methodology and terminology? This book, the first in a series of three, provides a look at the foundations of artificial intelligence and analytics and why readers need an unbiased understanding of the subject. The authors include the basics such as algorithms, mental concepts, models, and paradigms in addition to the benefits of machine learning. The book also includes a chapter on data and the various forms of data. The authors wrap up this book with a look at the next frontiers such as applications and designing your environment for success, which segue into the topics of the next two books in the series.
Publisher: CRC Press
ISBN: 100006722X
Category : Medical
Languages : en
Pages : 194
Book Description
It's All Analytics! The Foundations of AI, Big Data and Data Science Landscape for Professionals in Healthcare, Business, and Government (978-0-367-35968-3, 325690) Professionals are challenged each day by a changing landscape of technology and terminology. In recent history, especially in the last 25 years, there has been an explosion of terms and methods that automate and improve decision-making and operations. One term, "analytics," is an overarching description of a compilation of methodologies. But AI (artificial intelligence), statistics, decision science, and optimization, which have been around for decades, have resurged. Also, things like business intelligence, online analytical processing (OLAP) and many, many more have been born or reborn. How is someone to make sense of all this methodology and terminology? This book, the first in a series of three, provides a look at the foundations of artificial intelligence and analytics and why readers need an unbiased understanding of the subject. The authors include the basics such as algorithms, mental concepts, models, and paradigms in addition to the benefits of machine learning. The book also includes a chapter on data and the various forms of data. The authors wrap up this book with a look at the next frontiers such as applications and designing your environment for success, which segue into the topics of the next two books in the series.
The Executive's Guide to AI and Analytics
Author: Scott Burk
Publisher: CRC Press
ISBN: 100059632X
Category : Business & Economics
Languages : en
Pages : 138
Book Description
The Problem? Companies are failing to deliver on AI and analytics with over half stating they are "not yet treating data as a business asset". Over half admit that they are not competing on data and analytics. Seven out of 10 companies in a 2020 MIT study reported minimal or no impact from AI so far. Among the 90% of companies that have made some investment in AI, fewer than 2 out of 5 (40%) report business gains from AI in the past three years. And only about 25% of organizations have actually forged this data-driven culture. Is investment lacking? No. Companies now are spending more than ever in data, analytics, and AI technologies. Is it a lack of technology? No. There are fascinating breakthroughs occurring on all fronts with image, voice, and streaming pattern recognition on the forefront. Is it a lack of technical talent? Not really. While some studies cite that we need to train more data scientists, developers, and related professionals, the curve of demand by supply is dampening. Is it a lack of creating an executable strategic plan? Yes. While there has been a lot of strategic wishing, organizations lack meaningful strategic plans. Specifically, the development of executable strategies and the leadership to see these strategies brought to fruition. This is the problem. Lack of execution and lack of incorporating key components that align and enable execution of the business strategy to delivery is killing AI and analytics programs. Scott Burk and Gary D. Miner have written this book for executives at all levels who are charged with executing on analytics that need to address this issue. The book provides unique insights into repairing the gaps that programs need to fill to provide value from analytics programs. It complements their three-part series, It’s All Analytics! by focusing on leadership decisions that augment data literacy, organizational architecture, and AI case studies.
Publisher: CRC Press
ISBN: 100059632X
Category : Business & Economics
Languages : en
Pages : 138
Book Description
The Problem? Companies are failing to deliver on AI and analytics with over half stating they are "not yet treating data as a business asset". Over half admit that they are not competing on data and analytics. Seven out of 10 companies in a 2020 MIT study reported minimal or no impact from AI so far. Among the 90% of companies that have made some investment in AI, fewer than 2 out of 5 (40%) report business gains from AI in the past three years. And only about 25% of organizations have actually forged this data-driven culture. Is investment lacking? No. Companies now are spending more than ever in data, analytics, and AI technologies. Is it a lack of technology? No. There are fascinating breakthroughs occurring on all fronts with image, voice, and streaming pattern recognition on the forefront. Is it a lack of technical talent? Not really. While some studies cite that we need to train more data scientists, developers, and related professionals, the curve of demand by supply is dampening. Is it a lack of creating an executable strategic plan? Yes. While there has been a lot of strategic wishing, organizations lack meaningful strategic plans. Specifically, the development of executable strategies and the leadership to see these strategies brought to fruition. This is the problem. Lack of execution and lack of incorporating key components that align and enable execution of the business strategy to delivery is killing AI and analytics programs. Scott Burk and Gary D. Miner have written this book for executives at all levels who are charged with executing on analytics that need to address this issue. The book provides unique insights into repairing the gaps that programs need to fill to provide value from analytics programs. It complements their three-part series, It’s All Analytics! by focusing on leadership decisions that augment data literacy, organizational architecture, and AI case studies.
Artificial Intelligence
Author: David Sweenor
Publisher: TinyTechMedia LLC
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
In the business world, the very term artificial intelligence (AI) is shrouded in mystery. For some, it’s the brains behind a robotic apocalypse. For others, it provides hope for a better society with self-driving cars, food security, and medical breakthroughs. But what about for businesses? For most executives , the term “AI” is vague, confusing, and although intriguing, it seems unapproachable. Artificial Intelligence: An Executive Guide to Make AI Work for Your Business is designed for non-experts—it’s for business teams, business leaders, and executives who never seem to have enough time in the day to learn about the latest technology trends. TinyTechGuides™ are meant to be read in under two hours and focus on the application of technologies in business, government, and educational settings. This book covers the fundamentals of AI: data, analytic, and automation technologies—from modern data management techniques to chatbots, machine learning, natural language processing (NLP), robotic process automation (RPA), and computer vision. It discusses the business benefits of AI, the importance of AI ethics, MLOps, and provides real steps on how to start your AI journey. With real-world examples of businesses applying AI, you’ll learn how to use AI within Accounting & Finance, Marketing & Sales, Research & Development, Supply Chain, IT, Human Resources, and Service and Support. There are practical industry examples across Banking & Finance, Energy & Utilities, Insurance, Government, Healthcare, Life Sciences, Manufacturing, Retail, Telecom, and Transportation & Logistics. If you want to know how AI can be applied to improve your business, this TinyTechGuide™ is for you! Remember, It’s not the tech that’s tiny, just the book!™
Publisher: TinyTechMedia LLC
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
In the business world, the very term artificial intelligence (AI) is shrouded in mystery. For some, it’s the brains behind a robotic apocalypse. For others, it provides hope for a better society with self-driving cars, food security, and medical breakthroughs. But what about for businesses? For most executives , the term “AI” is vague, confusing, and although intriguing, it seems unapproachable. Artificial Intelligence: An Executive Guide to Make AI Work for Your Business is designed for non-experts—it’s for business teams, business leaders, and executives who never seem to have enough time in the day to learn about the latest technology trends. TinyTechGuides™ are meant to be read in under two hours and focus on the application of technologies in business, government, and educational settings. This book covers the fundamentals of AI: data, analytic, and automation technologies—from modern data management techniques to chatbots, machine learning, natural language processing (NLP), robotic process automation (RPA), and computer vision. It discusses the business benefits of AI, the importance of AI ethics, MLOps, and provides real steps on how to start your AI journey. With real-world examples of businesses applying AI, you’ll learn how to use AI within Accounting & Finance, Marketing & Sales, Research & Development, Supply Chain, IT, Human Resources, and Service and Support. There are practical industry examples across Banking & Finance, Energy & Utilities, Insurance, Government, Healthcare, Life Sciences, Manufacturing, Retail, Telecom, and Transportation & Logistics. If you want to know how AI can be applied to improve your business, this TinyTechGuide™ is for you! Remember, It’s not the tech that’s tiny, just the book!™
Practical Data Analytics for Innovation in Medicine
Author: Gary D. Miner
Publisher: Academic Press
ISBN: 0323952755
Category : Computers
Languages : en
Pages : 578
Book Description
Practical Data Analytics for Innovation in Medicine: Building Real Predictive and Prescriptive Models in Personalized Healthcare and Medical Research Using AI, ML, and Related Technologies, Second Edition discusses the needs of healthcare and medicine in the 21st century, explaining how data analytics play an important and revolutionary role. With healthcare effectiveness and economics facing growing challenges, there is a rapidly emerging movement to fortify medical treatment and administration by tapping the predictive power of big data, such as predictive analytics, which can bolster patient care, reduce costs, and deliver greater efficiencies across a wide range of operational functions. Sections bring a historical perspective, highlight the importance of using predictive analytics to help solve health crisis such as the COVID-19 pandemic, provide access to practical step-by-step tutorials and case studies online, and use exercises based on real-world examples of successful predictive and prescriptive tools and systems. The final part of the book focuses on specific technical operations related to quality, cost-effective medical and nursing care delivery and administration brought by practical predictive analytics. Brings a historical perspective in medical care to discuss both the current status of health care delivery worldwide and the importance of using modern predictive analytics to help solve the health care crisis Provides online tutorials on several predictive analytics systems to help readers apply their knowledge on today’s medical issues and basic research Teaches how to develop effective predictive analytic research and to create decisioning/prescriptive analytic systems to make medical decisions quicker and more accurate
Publisher: Academic Press
ISBN: 0323952755
Category : Computers
Languages : en
Pages : 578
Book Description
Practical Data Analytics for Innovation in Medicine: Building Real Predictive and Prescriptive Models in Personalized Healthcare and Medical Research Using AI, ML, and Related Technologies, Second Edition discusses the needs of healthcare and medicine in the 21st century, explaining how data analytics play an important and revolutionary role. With healthcare effectiveness and economics facing growing challenges, there is a rapidly emerging movement to fortify medical treatment and administration by tapping the predictive power of big data, such as predictive analytics, which can bolster patient care, reduce costs, and deliver greater efficiencies across a wide range of operational functions. Sections bring a historical perspective, highlight the importance of using predictive analytics to help solve health crisis such as the COVID-19 pandemic, provide access to practical step-by-step tutorials and case studies online, and use exercises based on real-world examples of successful predictive and prescriptive tools and systems. The final part of the book focuses on specific technical operations related to quality, cost-effective medical and nursing care delivery and administration brought by practical predictive analytics. Brings a historical perspective in medical care to discuss both the current status of health care delivery worldwide and the importance of using modern predictive analytics to help solve the health care crisis Provides online tutorials on several predictive analytics systems to help readers apply their knowledge on today’s medical issues and basic research Teaches how to develop effective predictive analytic research and to create decisioning/prescriptive analytic systems to make medical decisions quicker and more accurate
Information Quality
Author: Ron S. Kenett
Publisher: John Wiley & Sons
ISBN: 1118874447
Category : Mathematics
Languages : en
Pages : 381
Book Description
Provides an important framework for data analysts in assessing the quality of data and its potential to provide meaningful insights through analysis Analytics and statistical analysis have become pervasive topics, mainly due to the growing availability of data and analytic tools. Technology, however, fails to deliver insights with added value if the quality of the information it generates is not assured. Information Quality (InfoQ) is a tool developed by the authors to assess the potential of a dataset to achieve a goal of interest, using data analysis. Whether the information quality of a dataset is sufficient is of practical importance at many stages of the data analytics journey, from the pre-data collection stage to the post-data collection and post-analysis stages. It is also critical to various stakeholders: data collection agencies, analysts, data scientists, and management. This book: Explains how to integrate the notions of goal, data, analysis and utility that are the main building blocks of data analysis within any domain. Presents a framework for integrating domain knowledge with data analysis. Provides a combination of both methodological and practical aspects of data analysis. Discusses issues surrounding the implementation and integration of InfoQ in both academic programmes and business / industrial projects. Showcases numerous case studies in a variety of application areas such as education, healthcare, official statistics, risk management and marketing surveys. Presents a review of software tools from the InfoQ perspective along with example datasets on an accompanying website. This book will be beneficial for researchers in academia and in industry, analysts, consultants, and agencies that collect and analyse data as well as undergraduate and postgraduate courses involving data analysis.
Publisher: John Wiley & Sons
ISBN: 1118874447
Category : Mathematics
Languages : en
Pages : 381
Book Description
Provides an important framework for data analysts in assessing the quality of data and its potential to provide meaningful insights through analysis Analytics and statistical analysis have become pervasive topics, mainly due to the growing availability of data and analytic tools. Technology, however, fails to deliver insights with added value if the quality of the information it generates is not assured. Information Quality (InfoQ) is a tool developed by the authors to assess the potential of a dataset to achieve a goal of interest, using data analysis. Whether the information quality of a dataset is sufficient is of practical importance at many stages of the data analytics journey, from the pre-data collection stage to the post-data collection and post-analysis stages. It is also critical to various stakeholders: data collection agencies, analysts, data scientists, and management. This book: Explains how to integrate the notions of goal, data, analysis and utility that are the main building blocks of data analysis within any domain. Presents a framework for integrating domain knowledge with data analysis. Provides a combination of both methodological and practical aspects of data analysis. Discusses issues surrounding the implementation and integration of InfoQ in both academic programmes and business / industrial projects. Showcases numerous case studies in a variety of application areas such as education, healthcare, official statistics, risk management and marketing surveys. Presents a review of software tools from the InfoQ perspective along with example datasets on an accompanying website. This book will be beneficial for researchers in academia and in industry, analysts, consultants, and agencies that collect and analyse data as well as undergraduate and postgraduate courses involving data analysis.
Google Analytics
Author: Jerri L. Ledford
Publisher: John Wiley and Sons
ISBN: 1118081595
Category : Computers
Languages : en
Pages : 432
Book Description
Get the most out of the free Google Analytics service—and get more customers Google Analytics allows you to discover vital information about how end users interact with their Web sites by collecting vital data and providing tools to analyze it, with the intention of improving the end-user experience and, ultimately converting users into customers. This indispensible guide delves into the latest updates to the newest version of Google Analytics—3.0—and explains the concepts behind this amazing free tool. You'll discover what information to track, how to choose the right goals and filters, techniques for reading Google Analytics reports and graphs, and, most importantly, how to compile this data and use it to improve your Web site and attract more potential customers. Takes an in-depth look at Google Analytics 3.0 and walks you through the possibilities it offers Explains how to read Google Analytics reports and graphs so that you can compile this data and use it to improve your Web site and attract more users Shares techniques for converting end users into customers Features tips and suggestions for getting the information you need from Google Analytics reports and then converting that information into actionable tasks you can use With Google Analytics, Third Edition, you&'ll be well on your way to retrieving the information you need to convert visitors to your site into customers! Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
Publisher: John Wiley and Sons
ISBN: 1118081595
Category : Computers
Languages : en
Pages : 432
Book Description
Get the most out of the free Google Analytics service—and get more customers Google Analytics allows you to discover vital information about how end users interact with their Web sites by collecting vital data and providing tools to analyze it, with the intention of improving the end-user experience and, ultimately converting users into customers. This indispensible guide delves into the latest updates to the newest version of Google Analytics—3.0—and explains the concepts behind this amazing free tool. You'll discover what information to track, how to choose the right goals and filters, techniques for reading Google Analytics reports and graphs, and, most importantly, how to compile this data and use it to improve your Web site and attract more potential customers. Takes an in-depth look at Google Analytics 3.0 and walks you through the possibilities it offers Explains how to read Google Analytics reports and graphs so that you can compile this data and use it to improve your Web site and attract more users Shares techniques for converting end users into customers Features tips and suggestions for getting the information you need from Google Analytics reports and then converting that information into actionable tasks you can use With Google Analytics, Third Edition, you&'ll be well on your way to retrieving the information you need to convert visitors to your site into customers! Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
Actionable Web Analytics
Author: Jason Burby
Publisher: John Wiley & Sons
ISBN: 0470181133
Category : Computers
Languages : en
Pages : 290
Book Description
Knowing everything you can about each click to your Web site can help you make strategic decisions regarding your business. This book is about the why, not just the how, of web analytics and the rules for developing a "culture of analysis" inside your organization. Why you should collect various types of data. Why you need a strategy. Why it must remain flexible. Why your data must generate meaningful action. The authors answer these critical questions—and many more—using their decade of experience in Web analytics.
Publisher: John Wiley & Sons
ISBN: 0470181133
Category : Computers
Languages : en
Pages : 290
Book Description
Knowing everything you can about each click to your Web site can help you make strategic decisions regarding your business. This book is about the why, not just the how, of web analytics and the rules for developing a "culture of analysis" inside your organization. Why you should collect various types of data. Why you need a strategy. Why it must remain flexible. Why your data must generate meaningful action. The authors answer these critical questions—and many more—using their decade of experience in Web analytics.
Handbook of Statistical Analysis and Data Mining Applications
Author: Ken Yale
Publisher: Elsevier
ISBN: 0124166458
Category : Mathematics
Languages : en
Pages : 824
Book Description
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Publisher: Elsevier
ISBN: 0124166458
Category : Mathematics
Languages : en
Pages : 824
Book Description
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications