Author: Jianming Wei
Publisher: Springer Nature
ISBN: 9811963177
Category : Technology & Engineering
Languages : en
Pages : 185
Book Description
This book focuses on adaptive iterative learning control problem for nonlinear time-delay systems.A universal adaptive learning control scheme is provided for a wide classes of nonlinear systems with time-varying delay and input nonlinearity. Proceeding from easy to difficult, this book deals with the adaptive iterative learning control problems for parameterized nonlinear time-delay systems, non-parameterized nonlinear time-delay systems, nonlinear time-delay systems with unknown control direction and nonlinear time-delay systems with un-measurable states. The proposed control schemes can be extended to the adaptive learning control problem for wider classes of nonlinear systems revelent to abovementioned nonlinear systems.The topics presented in this book are research hot spots of iterative learning control. This book will be a valuable reference for researchers and students working or studying in this area.
Iterative Learning Control for Nonlinear Time-Delay System
Author: Jianming Wei
Publisher: Springer Nature
ISBN: 9811963177
Category : Technology & Engineering
Languages : en
Pages : 185
Book Description
This book focuses on adaptive iterative learning control problem for nonlinear time-delay systems.A universal adaptive learning control scheme is provided for a wide classes of nonlinear systems with time-varying delay and input nonlinearity. Proceeding from easy to difficult, this book deals with the adaptive iterative learning control problems for parameterized nonlinear time-delay systems, non-parameterized nonlinear time-delay systems, nonlinear time-delay systems with unknown control direction and nonlinear time-delay systems with un-measurable states. The proposed control schemes can be extended to the adaptive learning control problem for wider classes of nonlinear systems revelent to abovementioned nonlinear systems.The topics presented in this book are research hot spots of iterative learning control. This book will be a valuable reference for researchers and students working or studying in this area.
Publisher: Springer Nature
ISBN: 9811963177
Category : Technology & Engineering
Languages : en
Pages : 185
Book Description
This book focuses on adaptive iterative learning control problem for nonlinear time-delay systems.A universal adaptive learning control scheme is provided for a wide classes of nonlinear systems with time-varying delay and input nonlinearity. Proceeding from easy to difficult, this book deals with the adaptive iterative learning control problems for parameterized nonlinear time-delay systems, non-parameterized nonlinear time-delay systems, nonlinear time-delay systems with unknown control direction and nonlinear time-delay systems with un-measurable states. The proposed control schemes can be extended to the adaptive learning control problem for wider classes of nonlinear systems revelent to abovementioned nonlinear systems.The topics presented in this book are research hot spots of iterative learning control. This book will be a valuable reference for researchers and students working or studying in this area.
Iterative Learning Control
Author: Zeungnam Bien
Publisher: Springer Science & Business Media
ISBN: 1461556295
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
Iterative Learning Control (ILC) differs from most existing control methods in the sense that, it exploits every possibility to incorporate past control informa tion, such as tracking errors and control input signals, into the construction of the present control action. There are two phases in Iterative Learning Control: first the long term memory components are used to store past control infor mation, then the stored control information is fused in a certain manner so as to ensure that the system meets control specifications such as convergence, robustness, etc. It is worth pointing out that, those control specifications may not be easily satisfied by other control methods as they require more prior knowledge of the process in the stage of the controller design. ILC requires much less information of the system variations to yield the desired dynamic be haviors. Due to its simplicity and effectiveness, ILC has received considerable attention and applications in many areas for the past one and half decades. Most contributions have been focused on developing new ILC algorithms with property analysis. Since 1992, the research in ILC has progressed by leaps and bounds. On one hand, substantial work has been conducted and reported in the core area of developing and analyzing new ILC algorithms. On the other hand, researchers have realized that integration of ILC with other control techniques may give rise to better controllers that exhibit desired performance which is impossible by any individual approach.
Publisher: Springer Science & Business Media
ISBN: 1461556295
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
Iterative Learning Control (ILC) differs from most existing control methods in the sense that, it exploits every possibility to incorporate past control informa tion, such as tracking errors and control input signals, into the construction of the present control action. There are two phases in Iterative Learning Control: first the long term memory components are used to store past control infor mation, then the stored control information is fused in a certain manner so as to ensure that the system meets control specifications such as convergence, robustness, etc. It is worth pointing out that, those control specifications may not be easily satisfied by other control methods as they require more prior knowledge of the process in the stage of the controller design. ILC requires much less information of the system variations to yield the desired dynamic be haviors. Due to its simplicity and effectiveness, ILC has received considerable attention and applications in many areas for the past one and half decades. Most contributions have been focused on developing new ILC algorithms with property analysis. Since 1992, the research in ILC has progressed by leaps and bounds. On one hand, substantial work has been conducted and reported in the core area of developing and analyzing new ILC algorithms. On the other hand, researchers have realized that integration of ILC with other control techniques may give rise to better controllers that exhibit desired performance which is impossible by any individual approach.
Linear and Nonlinear Iterative Learning Control
Author: Jian-Xin Xu
Publisher: Springer
ISBN: 3540448454
Category : Science
Languages : en
Pages : 177
Book Description
This monograph summarizes the recent achievements made in the field of iterative learning control. The book is self-contained in theoretical analysis and can be used as a reference or textbook for a graduate level course as well as for self-study. It opens a new avenue towards a new paradigm in deterministic learning control theory accompanied by detailed examples.
Publisher: Springer
ISBN: 3540448454
Category : Science
Languages : en
Pages : 177
Book Description
This monograph summarizes the recent achievements made in the field of iterative learning control. The book is self-contained in theoretical analysis and can be used as a reference or textbook for a graduate level course as well as for self-study. It opens a new avenue towards a new paradigm in deterministic learning control theory accompanied by detailed examples.
Iterative Learning Control
Author: Yangquan Chen
Publisher: Springer
ISBN: 1846285399
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This book provides readers with a comprehensive coverage of iterative learning control. The book can be used as a text or reference for a course at graduate level and is also suitable for self-study and for industry-oriented courses of continuing education. Ranging from aerodynamic curve identification robotics to functional neuromuscular stimulation, Iterative Learning Control (ILC), started in the early 80s, is found to have wide applications in practice. Generally, a system under control may have uncertainties in its dynamic model and its environment. One attractive point in ILC lies in the utilisation of the system repetitiveness to reduce such uncertainties and in turn to improve the control performance by operating the system repeatedly. This monograph emphasises both theoretical and practical aspects of ILC. It provides some recent developments in ILC convergence and robustness analysis. The book also considers issues in ILC design. Several practical applications are presented to illustrate the effectiveness of ILC. The applied examples provided in this monograph are particularly beneficial to readers who wish to capitalise the system repetitiveness to improve system control performance.
Publisher: Springer
ISBN: 1846285399
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This book provides readers with a comprehensive coverage of iterative learning control. The book can be used as a text or reference for a course at graduate level and is also suitable for self-study and for industry-oriented courses of continuing education. Ranging from aerodynamic curve identification robotics to functional neuromuscular stimulation, Iterative Learning Control (ILC), started in the early 80s, is found to have wide applications in practice. Generally, a system under control may have uncertainties in its dynamic model and its environment. One attractive point in ILC lies in the utilisation of the system repetitiveness to reduce such uncertainties and in turn to improve the control performance by operating the system repeatedly. This monograph emphasises both theoretical and practical aspects of ILC. It provides some recent developments in ILC convergence and robustness analysis. The book also considers issues in ILC design. Several practical applications are presented to illustrate the effectiveness of ILC. The applied examples provided in this monograph are particularly beneficial to readers who wish to capitalise the system repetitiveness to improve system control performance.
Iterative Learning Control
Author: Hyo-Sung Ahn
Publisher: Springer Science & Business Media
ISBN: 1846288592
Category : Technology & Engineering
Languages : en
Pages : 237
Book Description
This monograph studies the design of robust, monotonically-convergent iterative learning controllers for discrete-time systems. It presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. The book shows how to use robust iterative learning control in the face of model uncertainty.
Publisher: Springer Science & Business Media
ISBN: 1846288592
Category : Technology & Engineering
Languages : en
Pages : 237
Book Description
This monograph studies the design of robust, monotonically-convergent iterative learning controllers for discrete-time systems. It presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. The book shows how to use robust iterative learning control in the face of model uncertainty.
Iterative Learning Control with Passive Incomplete Information
Author: Dong Shen
Publisher: Springer
ISBN: 9811082677
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
This book presents an in-depth discussion of iterative learning control (ILC) with passive incomplete information, highlighting the incomplete input and output data resulting from practical factors such as data dropout, transmission disorder, communication delay, etc.—a cutting-edge topic in connection with the practical applications of ILC. It describes in detail three data dropout models: the random sequence model, Bernoulli variable model, and Markov chain model—for both linear and nonlinear stochastic systems. Further, it proposes and analyzes two major compensation algorithms for the incomplete data, namely, the intermittent update algorithm and successive update algorithm. Incomplete information environments include random data dropout, random communication delay, random iteration-varying lengths, and other communication constraints. With numerous intuitive figures to make the content more accessible, the book explores several potential solutions to this topic, ensuring that readers are not only introduced to the latest advances in ILC for systems with random factors, but also gain an in-depth understanding of the intrinsic relationship between incomplete information environments and essential tracking performance. It is a valuable resource for academics and engineers, as well as graduate students who are interested in learning about control, data-driven control, networked control systems, and related fields.
Publisher: Springer
ISBN: 9811082677
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
This book presents an in-depth discussion of iterative learning control (ILC) with passive incomplete information, highlighting the incomplete input and output data resulting from practical factors such as data dropout, transmission disorder, communication delay, etc.—a cutting-edge topic in connection with the practical applications of ILC. It describes in detail three data dropout models: the random sequence model, Bernoulli variable model, and Markov chain model—for both linear and nonlinear stochastic systems. Further, it proposes and analyzes two major compensation algorithms for the incomplete data, namely, the intermittent update algorithm and successive update algorithm. Incomplete information environments include random data dropout, random communication delay, random iteration-varying lengths, and other communication constraints. With numerous intuitive figures to make the content more accessible, the book explores several potential solutions to this topic, ensuring that readers are not only introduced to the latest advances in ILC for systems with random factors, but also gain an in-depth understanding of the intrinsic relationship between incomplete information environments and essential tracking performance. It is a valuable resource for academics and engineers, as well as graduate students who are interested in learning about control, data-driven control, networked control systems, and related fields.
Intelligent Systems and Computing
Author: Bing-Yuan Cao
Publisher: Springer Nature
ISBN: 9819728916
Category :
Languages : en
Pages : 450
Book Description
Publisher: Springer Nature
ISBN: 9819728916
Category :
Languages : en
Pages : 450
Book Description
Iterative Learning Stabilization and Fault-Tolerant Control for Batch Processes
Author: Limin Wang
Publisher: Springer
ISBN: 9811357900
Category : Technology & Engineering
Languages : en
Pages : 328
Book Description
This book is based on the authors’ research on the stabilization and fault-tolerant control of batch processes, which are flourishing topics in the field of control system engineering. It introduces iterative learning control for linear/nonlinear single/multi-phase batch processes; iterative learning optimal guaranteed cost control; delay-dependent iterative learning control; and iterative learning fault-tolerant control for linear/nonlinear single/multi-phase batch processes. Providing important insights and useful methods and practical algorithms that can potentially be applied in batch process control and optimization, it is a valuable resource for researchers, scientists, and engineers in the field of process system engineering and control engineering.
Publisher: Springer
ISBN: 9811357900
Category : Technology & Engineering
Languages : en
Pages : 328
Book Description
This book is based on the authors’ research on the stabilization and fault-tolerant control of batch processes, which are flourishing topics in the field of control system engineering. It introduces iterative learning control for linear/nonlinear single/multi-phase batch processes; iterative learning optimal guaranteed cost control; delay-dependent iterative learning control; and iterative learning fault-tolerant control for linear/nonlinear single/multi-phase batch processes. Providing important insights and useful methods and practical algorithms that can potentially be applied in batch process control and optimization, it is a valuable resource for researchers, scientists, and engineers in the field of process system engineering and control engineering.
Affective Computing and Intelligent Interaction
Author: Jia Luo
Publisher: Springer Science & Business Media
ISBN: 3642278663
Category : Technology & Engineering
Languages : en
Pages : 914
Book Description
2012 International Conference on Affective Computing and Intelligent Interaction (ICACII 2012) was the most comprehensive conference focused on the various aspects of advances in Affective Computing and Intelligent Interaction. The conference provided a rare opportunity to bring together worldwide academic researchers and practitioners for exchanging the latest developments and applications in this field such as Intelligent Computing, Affective Computing, Machine Learning, Business Intelligence and HCI. This volume is a collection of 119 papers selected from 410 submissions from universities and industries all over the world, based on their quality and relevancy to the conference. All of the papers have been peer-reviewed by selected experts.
Publisher: Springer Science & Business Media
ISBN: 3642278663
Category : Technology & Engineering
Languages : en
Pages : 914
Book Description
2012 International Conference on Affective Computing and Intelligent Interaction (ICACII 2012) was the most comprehensive conference focused on the various aspects of advances in Affective Computing and Intelligent Interaction. The conference provided a rare opportunity to bring together worldwide academic researchers and practitioners for exchanging the latest developments and applications in this field such as Intelligent Computing, Affective Computing, Machine Learning, Business Intelligence and HCI. This volume is a collection of 119 papers selected from 410 submissions from universities and industries all over the world, based on their quality and relevancy to the conference. All of the papers have been peer-reviewed by selected experts.
Predictive Learning Control for Unknown Nonaffine Nonlinear Systems
Author: Qiongxia Yu
Publisher: Springer Nature
ISBN: 9811988579
Category : Technology & Engineering
Languages : en
Pages : 219
Book Description
This book investigates both theory and various applications of predictive learning control (PLC) which is an advanced technology for complex nonlinear systems. To avoid the difficult modeling problem for complex nonlinear systems, this book begins with the design and theoretical analysis of PLC method without using mechanism model information of the system, and then a series of PLC methods is designed that can cope with system constraints, varying trial lengths, unknown time delay, and available and unavailable system states sequentially. Applications of the PLC on both railway and urban road transportation systems are also studied. The book is intended for researchers, engineers, and graduate students who are interested in predictive control, learning control, intelligent transportation systems and related fields.
Publisher: Springer Nature
ISBN: 9811988579
Category : Technology & Engineering
Languages : en
Pages : 219
Book Description
This book investigates both theory and various applications of predictive learning control (PLC) which is an advanced technology for complex nonlinear systems. To avoid the difficult modeling problem for complex nonlinear systems, this book begins with the design and theoretical analysis of PLC method without using mechanism model information of the system, and then a series of PLC methods is designed that can cope with system constraints, varying trial lengths, unknown time delay, and available and unavailable system states sequentially. Applications of the PLC on both railway and urban road transportation systems are also studied. The book is intended for researchers, engineers, and graduate students who are interested in predictive control, learning control, intelligent transportation systems and related fields.