Iterative Error Correction

Iterative Error Correction PDF Author: Sarah J. Johnson
Publisher: Cambridge University Press
ISBN: 0521871484
Category : Computers
Languages : en
Pages : 356

Get Book Here

Book Description
Presents all of the key ideas needed to understand, design, implement and analyse iterative-based error correction schemes.

Iterative Error Correction

Iterative Error Correction PDF Author: Sarah J. Johnson
Publisher: Cambridge University Press
ISBN: 0521871484
Category : Computers
Languages : en
Pages : 356

Get Book Here

Book Description
Presents all of the key ideas needed to understand, design, implement and analyse iterative-based error correction schemes.

Iterative Decoding of Low Density Parity Check Codes and Turbo Codes

Iterative Decoding of Low Density Parity Check Codes and Turbo Codes PDF Author: Juntan Zhang
Publisher:
ISBN:
Category : Error-correcting codes (Information theory)
Languages : en
Pages : 288

Get Book Here

Book Description


Constrained Coding and Soft Iterative Decoding

Constrained Coding and Soft Iterative Decoding PDF Author: John L. Fan
Publisher: Springer Science & Business Media
ISBN: 1461515254
Category : Technology & Engineering
Languages : en
Pages : 268

Get Book Here

Book Description
Constrained Coding and Soft Iterative Decoding is the first work to combine the issues of constrained coding and soft iterative decoding (e.g., turbo and LDPC codes) from a unified point of view. Since constrained coding is widely used in magnetic and optical storage, it is necessary to use some special techniques (modified concatenation scheme or bit insertion) in order to apply soft iterative decoding. Recent breakthroughs in the design and decoding of error-control codes (ECCs) show significant potential for improving the performance of many communications systems. ECCs such as turbo codes and low-density parity check (LDPC) codes can be represented by graphs and decoded by passing probabilistic (a.k.a. `soft') messages along the edges of the graph. This message-passing algorithm yields powerful decoders whose performance can approach the theoretical limits on capacity. This exposition uses `normal graphs,' introduced by Forney, which extend in a natural manner to block diagram representations of the system and provide a simple unified framework for the decoding of ECCs, constrained codes, and channels with memory. Soft iterative decoding is illustrated by the application of turbo codes and LDPC codes to magnetic recording channels. For magnetic and optical storage, an issue arises in the use of constrained coding, which places restrictions on the sequences that can be transmitted through the channel; the use of constrained coding in combination with soft ECC decoders is addressed by the modified concatenation scheme also known as `reverse concatenation.' Moreover, a soft constraint decoder yields additional coding gain from the redundancy in the constraint, which may be of practical interest in the case of optical storage. In addition, this monograph presents several other research results (including the design of sliding-block lossless compression codes, and the decoding of array codes as LDPC codes). Constrained Coding and Soft Iterative Decoding will prove useful to students, researchers and professional engineers who are interested in understanding this new soft iterative decoding paradigm and applying it in communications and storage systems.

Turbo-like Codes

Turbo-like Codes PDF Author: Aliazam Abbasfar
Publisher: Springer Science & Business Media
ISBN: 1402063911
Category : Technology & Engineering
Languages : en
Pages : 94

Get Book Here

Book Description
This book introduces turbo error correcting concept in a simple language, including a general theory and the algorithms for decoding turbo-like code. It presents a unified framework for the design and analysis of turbo codes and LDPC codes and their decoding algorithms. A major focus is on high speed turbo decoding, which targets applications with data rates of several hundred million bits per second (Mbps).

Fundamentals of Codes, Graphs, and Iterative Decoding

Fundamentals of Codes, Graphs, and Iterative Decoding PDF Author: Stephen B. Wicker
Publisher: Springer Science & Business Media
ISBN: 0306477947
Category : Technology & Engineering
Languages : en
Pages : 241

Get Book Here

Book Description
Fundamentals of Codes, Graphs, and Iterative Decoding is an explanation of how to introduce local connectivity, and how to exploit simple structural descriptions. Chapter 1 provides an overview of Shannon theory and the basic tools of complexity theory, communication theory, and bounds on code construction. Chapters 2 - 4 provide an overview of "classical" error control coding, with an introduction to abstract algebra, and block and convolutional codes. Chapters 5 - 9 then proceed to systematically develop the key research results of the 1990s and early 2000s with an introduction to graph theory, followed by chapters on algorithms on graphs, turbo error control, low density parity check codes, and low density generator codes.

Trellis and Turbo Coding

Trellis and Turbo Coding PDF Author: Christian B. Schlegel
Publisher: John Wiley & Sons
ISBN: 1119106338
Category : Science
Languages : en
Pages : 521

Get Book Here

Book Description
This new edition has been extensively revised to reflect the progress in error control coding over the past few years. Over 60% of the material has been completely reworked, and 30% of the material is original. Convolutional, turbo, and low density parity-check (LDPC) coding and polar codes in a unified framework Advanced research-related developments such as spatial coupling A focus on algorithmic and implementation aspects of error control coding

Fundamentals of Convolutional Coding

Fundamentals of Convolutional Coding PDF Author: Rolf Johannesson
Publisher: John Wiley & Sons
ISBN: 0470276835
Category : Technology & Engineering
Languages : en
Pages : 686

Get Book Here

Book Description
Fundamentals of Convolutional Coding, Second Edition, regarded as a bible of convolutional coding brings you a clear and comprehensive discussion of the basic principles of this field Two new chapters on low-density parity-check (LDPC) convolutional codes and iterative coding Viterbi, BCJR, BEAST, list, and sequential decoding of convolutional codes Distance properties of convolutional codes Includes a downloadable solutions manual

Error-Correction Coding and Decoding

Error-Correction Coding and Decoding PDF Author: Martin Tomlinson
Publisher: Springer
ISBN: 3319511033
Category : Technology & Engineering
Languages : en
Pages : 527

Get Book Here

Book Description
This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of th ese codes. Part IV deals with decoders designed to realize optimum performance. Part V describes applications which include combined error correction and detection, public key cryptography using Goppa codes, correcting errors in passwords and watermarking. This book is a valuable resource for anyone interested in error-correcting codes and their applications, ranging from non-experts to professionals at the forefront of research in their field. This book is open access under a CC BY 4.0 license.

Turbo Code Applications

Turbo Code Applications PDF Author: Keattisak Sripimanwat
Publisher: Springer Science & Business Media
ISBN: 140203685X
Category : Technology & Engineering
Languages : en
Pages : 393

Get Book Here

Book Description
Turbo Code Applications: a journey from a paper to realization presents c- temporary applications of turbo codes in thirteen technical chapters. Each chapter focuses on a particular communication technology utilizing turbo codes, and they are written by experts who have been working in related th areas from around the world. This book is published to celebrate the 10 year anniversary of turbo codes invention by Claude Berrou Alain Glavieux and Punya Thitimajshima (1993-2003). As known for more than a decade, turbo code is the astonishing error control coding scheme which its perf- mance closes to the Shannon’s limit. It has been honored consequently as one of the seventeen great innovations during the ?rst ?fty years of information theory foundation. With the amazing performance compared to that of other existing codes, turbo codes have been adopted into many communication s- tems and incorporated with various modern industrial standards. Numerous research works have been reported from universities and advance companies worldwide. Evidently, it has successfully revolutionized the digital commu- cations. Turbo code and its successors have been applied in most communications startingfromthegroundorterrestrialsystemsofdatastorage,ADSLmodem, and ?ber optic communications. Subsequently, it moves up to the air channel applications by employing to wireless communication systems, and then ?ies up to the space by using in digital video broadcasting and satellite com- nications. Undoubtedly, with the excellent error correction potential, it has been selected to support data transmission in space exploring system as well.

Low Complexity Capacity-approaching Codes for Data Transmission

Low Complexity Capacity-approaching Codes for Data Transmission PDF Author: Christopher J. Nelson
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This thesis analyzes the design of low complexity capacity approaching codes suitable for data transmission. The research documented in this thesis describes new and novel design methods for three well-known error control coding techniques, Turbo codes, LDPC block codes and LDPC convolutional codes, which are suitable for implementation in a number of modem digital communication systems. Firstly, we present Partial Unit Memory (PUM) based Turbo codes. A variant of Turbo codes which encompasses the advantages of both block and convolutional codes. The design methods of PUM Turbo codes are presented and Bit Error Rate (BER) simulations and Extrinsic Information Transfer (EXIT) chart analysis illustrates their performance. Partial Unit Memory codes are a class of low complexity, non-binary convolutional codes and have been shown to outperform equivalent convolutional codes. We present the EXIT charts of parallel concatenated PUM codes and PUM Woven Turbo Codes and analyse them to assess their performance compared with standard Turbo code designs. Resulting Extrinsic Information Transfer charts indicate that the proposed PUM-based codes have higher mutual information during iterative decoding than the equivalent Recursive, Systematic, Convolutional Turbo codes (RSC- TC) for the same Eb/No, i.e. the output of the decoders provides a better approximation of the decoded bits. The EXIT chart analysis is supported by BER plots, which confirms the behaviour predicted by the EXIT charts. We show that the concatenated PUM codes outperform the well-known turbo codes in the waterfall region, with comparable performance in the error floor region. In the second section we present Low Density Generator Matrix codes; a variant of LDPC codes that have low complexity encoding and decoding techniques. We present results of three construction methods and describe how LDGM codes can be modified to improve the error-floor region. We describe the design of random, structured and semi-random, semi- structured codes and how, by replacing the identity matrix with a staircase matrix, LDGM codes can show significant improvements in the error-floor region. Furthermore, we analyse the performance of serially concatenated LDGM codes and how they can benefit when we use the modified LDGM codes in either the outer code or the inner code. The results indicate that concatenated LDGM codes that incorporate LDGM staircase codes in the inner code will show improvements in error-floor performance while maintaining near capacity limit performances. While in the case of LDGM staircase codes being used as the outer codes no significant improvements in waterfall or error-floor regions are observed compared to a concatenated scheme that employs an LDGM identity outer code. Finally, we propose a new design of LDPC convolutional code, which we term as time invariant Low Density Parity Check Unit Memory (LDPC-UM) codes. The performance of LDPC block and Low Density Parity Check Unit Memory codes are compared, in each case, the Low Density Parity Check Unit Memory codes performance is at least as good as that of the LDPC block codes from which they are derived. LDPC-UM codes are the convolutional counterparts of LDPC block codes. Here, we describe techniques for the design of low complexity time invariant LDPC-UM codes by unwrapping the Tanner graph of algebraically constructed quasi-cyclic LDPC codes. The Tanner graph is then used to describe a pipelined message passing based iterative decoder for LDPC-UM codes and standard LDPC convolutional codes that outputs decoding results continuously.