Isotope-Based Quantum Information

Isotope-Based Quantum Information PDF Author: Vladimir G. Plekhanov
Publisher: Springer Science & Business Media
ISBN: 3642287506
Category : Computers
Languages : en
Pages : 133

Get Book Here

Book Description
The present book provides to the main ideas and techniques of the rapid progressing field of quantum information and quantum computation using isotope - mixed materials. It starts with an introduction to the isotope physics and then describes of the isotope - based quantum information and quantum computation. The ability to manipulate and control electron and/or nucleus spin in semiconductor devices provides a new route to expand the capabilities of inorganic semiconductor-based electronics and to design innovative devices with potential application in quantum computing. One of the major challenges towards these objectives is to develop semiconductor-based systems and architectures in which the spatial distribution of spins and their properties can be controlled. For instance, to eliminate electron spin decoherence resulting from hyperfine interaction due to nuclear spin background, isotopically controlled devices are needed (i.e., nuclear spin-depleted). In other emerging concepts, the control of the spatial distribution of isotopes with nuclear spins is a prerequisite to implement the quantum bits (or qbits). Therefore, stable semiconductor isotopes are important elements in the development of solid-state quantum information. There are not only different algorithms of quantum computation discussed but also the different models of quantum computers are presented. With numerous illustrations this small book is of great interest for undergraduate students taking courses in mesoscopic physics or nanoelectronics as well as quantum information, and academic and industrial researches working in this field.

Isotope-Based Quantum Information

Isotope-Based Quantum Information PDF Author: Vladimir G. Plekhanov
Publisher: Springer Science & Business Media
ISBN: 3642287506
Category : Computers
Languages : en
Pages : 133

Get Book Here

Book Description
The present book provides to the main ideas and techniques of the rapid progressing field of quantum information and quantum computation using isotope - mixed materials. It starts with an introduction to the isotope physics and then describes of the isotope - based quantum information and quantum computation. The ability to manipulate and control electron and/or nucleus spin in semiconductor devices provides a new route to expand the capabilities of inorganic semiconductor-based electronics and to design innovative devices with potential application in quantum computing. One of the major challenges towards these objectives is to develop semiconductor-based systems and architectures in which the spatial distribution of spins and their properties can be controlled. For instance, to eliminate electron spin decoherence resulting from hyperfine interaction due to nuclear spin background, isotopically controlled devices are needed (i.e., nuclear spin-depleted). In other emerging concepts, the control of the spatial distribution of isotopes with nuclear spins is a prerequisite to implement the quantum bits (or qbits). Therefore, stable semiconductor isotopes are important elements in the development of solid-state quantum information. There are not only different algorithms of quantum computation discussed but also the different models of quantum computers are presented. With numerous illustrations this small book is of great interest for undergraduate students taking courses in mesoscopic physics or nanoelectronics as well as quantum information, and academic and industrial researches working in this field.

Introduction to Isotopic Materials Science

Introduction to Isotopic Materials Science PDF Author: Vladimir G. Plekhanov
Publisher: Springer
ISBN: 3319422618
Category : Technology & Engineering
Languages : en
Pages : 298

Get Book Here

Book Description
This book describes new trends in the nanoscience of isotopic materials science. Assuming a background in graduate condensed matter physics and covering the fundamental aspects of isotopic materials science from the very beginning, it equips readers to engage in high-level professional research in this area. The book ́s main objective is to provide insight into the question of why solids are the way they are, either because of how their atoms are bonded with one another, because of defects in their structure, or because of how they are produced or processed. Accordingly, it explores the science of how atoms interact, connects the results to real materials properties, and demonstrates the engineering concepts that can be used to produce or improve semiconductors by design. In addition, it shows how the concepts discussed are applied in the laboratory. The book addresses the needs of researchers, graduate students and senior undergraduate students alike. Although primarily written for materials science audience, it will be equally useful to those teaching in electrical engineering, materials science or even chemical engineering or physics curricula. In order to maintain the focus on materials concepts, however, the book does not burden the reader with details of many of the derivations and equations nor does it delve into the details of electrical engineering topics.

A Short Introduction to Quantum Information and Quantum Computation

A Short Introduction to Quantum Information and Quantum Computation PDF Author: Michel Le Bellac
Publisher: Cambridge University Press
ISBN: 1139457047
Category : Science
Languages : en
Pages : 179

Get Book Here

Book Description
Quantum information and computation is a rapidly expanding and cross-disciplinary subject. This book, first published in 2006, gives a self-contained introduction to the field for physicists, mathematicians and computer scientists who want to know more about this exciting subject. After a step-by-step introduction to the quantum bit (qubit) and its main properties, the author presents the necessary background in quantum mechanics. The core of the subject, quantum computation, is illustrated by a detailed treatment of three quantum algorithms: Deutsch, Grover and Shor. The final chapters are devoted to the physical implementation of quantum computers, including the most recent aspects, such as superconducting qubits and quantum dots, and to a short account of quantum information. Written at a level suitable for undergraduates in physical sciences, no previous knowledge of quantum mechanics is assumed, and only elementary notions of physics are required. The book includes many short exercises, with solutions available to instructors through [email protected].

Isotopes in Condensed Matter

Isotopes in Condensed Matter PDF Author: Vladimir G. Plekhanov
Publisher: Springer Science & Business Media
ISBN: 3642287239
Category : Technology & Engineering
Languages : en
Pages : 299

Get Book Here

Book Description
This book provides a concise introduction to the newly created sub-discipline of solid state physics isotopetronics. The role of isotopes in materials and their properties are describe in this book. The problem of the enigma of the atomic mass in microphysics is briefly discussed. The range of the applications of isotopes is wide: from biochemical process in living organisms to modern technical applications in quantum information. Isotopetronics promises to improve nanoelectronic and optoelectronic devices. With numerous illustrations this book is useful to researchers, engineers and graduate students.

Isotope Low-Dimensional Structures

Isotope Low-Dimensional Structures PDF Author: Vladimir G. Plekhanov
Publisher: Springer Science & Business Media
ISBN: 3642286135
Category : Science
Languages : en
Pages : 104

Get Book Here

Book Description
This Briefs volume describes the properties and structure of elementary excitations in isotope low-dimensional structures. Without assuming prior knowledge of quantum physics, the present book provides the basic knowledge needed to understand the recent developments in the sub-disciplines of nanoscience isotopetronics, novel device concepts and materials for nanotechnology. It is the first and comprehensive interdisciplinary account of the newly developed scientific discipline isotopetronics.

Controlling the Quantum World

Controlling the Quantum World PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309102707
Category : Science
Languages : en
Pages : 245

Get Book Here

Book Description
As part of the Physics 2010 decadal survey project, the Department of Energy and the National Science Foundation requested that the National Research Council assess the opportunities, over roughly the next decade, in atomic, molecular, and optical (AMO) science and technology. In particular, the National Research Council was asked to cover the state of AMO science, emphasizing recent accomplishments and identifying new and compelling scientific questions. Controlling the Quantum World, discusses both the roles and challenges for AMO science in instrumentation; scientific research near absolute zero; development of extremely intense x-ray and laser sources; exploration and control of molecular processes; photonics at the nanoscale level; and development of quantum information technology. This book also offers an assessment of and recommendations about critical issues concerning maintaining U.S. leadership in AMO science and technology.

Electron Spin Resonance (ESR) Based Quantum Computing

Electron Spin Resonance (ESR) Based Quantum Computing PDF Author: Takeji Takui
Publisher: Springer
ISBN: 1493936581
Category : Technology & Engineering
Languages : en
Pages : 259

Get Book Here

Book Description
This book addresses electron spin-qubit based quantum computing and quantum information processing with a strong focus on the background and applications to EPR/ESR technique and spectroscopy. It explores a broad spectrum of topics including quantum computing, information processing, quantum effects in electron-nuclear coupled molecular spin systems, adiabatic quantum computing, heat bath algorithmic cooling with spins, and gateway schemes of quantum control for spin networks to NMR quantum information. The organization of the book places emphasis on relevant molecular qubit spectroscopy. These revolutionary concepts have never before been included in a comprehensive volume that covers theory, physical basis, technological basis, applications, and new advances in this emerging field. Electron Spin Resonance (ESR) Based Quantum Computing, co-edited by leading and renowned researchers Takeji Takui, Graeme Hanson and Lawrence J Berliner, is an ideal resource for students and researchers in the fields of EPR/ESR, NMR and quantum computing. This book also • Explores methods of harnessing quantum effects in electron-nuclear coupled molecular spin systems • Expertly discusses applications of optimal control theory in quantum computing • Broadens the readers’ understanding of NMR quantum information processing

Experimental Aspects of Quantum Computing

Experimental Aspects of Quantum Computing PDF Author: Henry O. Everitt
Publisher: Springer Science & Business Media
ISBN: 0387277323
Category : Science
Languages : en
Pages : 303

Get Book Here

Book Description
Practical quantum computing still seems more than a decade away, and researchers have not even identified what the best physical implementation of a quantum bit will be. There is a real need in the scientific literature for a dialogue on the topic of lessons learned and looming roadblocks. This reprint from Quantum Information Processing is dedicated to the experimental aspects of quantum computing and includes articles that 1) highlight the lessons learned over the last 10 years, and 2) outline the challenges over the next 10 years. The special issue includes a series of invited articles that discuss the most promising physical implementations of quantum computing. The invited articles were to draw grand conclusions about the past and speculate about the future, not just report results from the present.

Applications of the Isotopic Effect in Solids

Applications of the Isotopic Effect in Solids PDF Author: Vladimir G. Plekhanov
Publisher: Springer Science & Business Media
ISBN: 3642185037
Category : Science
Languages : en
Pages : 338

Get Book Here

Book Description
Readers intent on mastering the basics should start by reading the first few overview chapters and then delve into the descriptions of specific current applications to see how they actually work. Important future applications are also outlined, including information storage, materials for computer memories, quantum computers, isotopic fibers, isotopic optoelectronics, and quantum electronics.

Quantum Computing

Quantum Computing PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 030947969X
Category : Computers
Languages : en
Pages : 273

Get Book Here

Book Description
Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.