Iridium(III) Silylene Complexes

Iridium(III) Silylene Complexes PDF Author: Binh Dang Ho
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The scope of this thesis spans the most recent advances in the investigation of chemical bonds of iridium-silicon complexes, in which a metal-bound silyl group behaves as a Z ligand that maintains a dative bond with the metal centre. This contrasts greatly with the case where this group behaves like an X ligand, that is where this silyl group binds to Ir through a covalent bond. Finally, and most interestingly are silylene ligands that in principle should establish a double bond with the Ir centre. The idea of evaluating and tuning the electrophilic character of the silyl moiety and adjuncts its “silylicity” was probed by experimental and theoretical means. To conduct that scheme, a broad range of metal-silane adducts and other metal-silyl complexes were investigated by the computation of metal-silyl interaction energies to outline the established tools that rationalize the bonding relationship that exists between the metal center and a SiR3 moiety. Also, this research revealed a clear separation between cases in which the Z character of the silyl moiety is the best description, and cases that belong to “classical” situations in which the X character dominates. Moreover, we postulated that for metal-silane adducts that possess a low intrinsic silylicity, a high “silylicity” can be triggered by ligand replacement or by changing in the charge of the complex.While working on this topic, we discovered that in the presence of tetrahydrofuran (THF), [(Ir-H)→SiRH2]+ adducts readily convert by H2 gas elimination at sub-ambient temperature into new THF-stabilized metallacyclic Ir(III)-"silylene" complexes. The emergence of metal silylene complexes via sequential H-Si activations followed by the spontaneous release of H2 featured in this thesis is unique. The primary goal of this thesis finally was to fully characterize those elusive complexes by NMR spectroscopy analyses and X-ray diffraction analysis. Furthermore, theoretical investigations (static DFT-D reaction-energy profiling, ETS-NOCV) and NMR kinetic studies were utilized to demonstrate the role of THF which facilitated H2 elimination. Coupled with silylene metal complex chemistry mentioned above, cationic iridacycle 1b is of interesting catalytic reactivity toward nitro arenes, which can perform the nitro reduction in arenes to give aniline type products.In crafting a new development of this chemistry, it is safe to hypothesize that cationic hydrido-Ir(III)-silylium species, whose catalytic reactivity is of significant correlation with the extend of polarization of the molecule can enhance in the key intermediates the molecule polarization, and therefore increase its catalytic reactivity. Such polarization that occurs already in the Ir-silane adduct stems from the electropositivity of Si centre. Keeping the main ligand backbone constant, introduction of a fluoro substituent can improve the polarization of the same molecule and by way of consequence increase its catalytic reactivity.As expected, F-1a also displays remarkable catalytic reactivity toward a benchmark test reaction that can be followed by piezometry, i.e. the O-dehydrosilylation of alcohols at room temperature with Et3SiH. A hydrido-Ir(III)-silylium intermediate crystal was trapped as well following on a reaction with Et2SiH. In conclusion, based on the discovery of hydrido-Ir(III)-silylium intermediates associated with a comprehensive study of their reactivity and catalytic performance, this thesis has taken steps to advance knowledge of Ir-silicon complexes by synthesis and the full structural characterization of notoriously elusive metal silylene complexes. Also, sophisticated computational methods have been employed to shed light on the mechanism of conversion of Ir-silane adducts into silylenes of which a great number were trapped by reactive recrystallization and subsequently characterized by X-ray diffraction analysis.

Iridium(III) Silylene Complexes

Iridium(III) Silylene Complexes PDF Author: Binh Dang Ho
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The scope of this thesis spans the most recent advances in the investigation of chemical bonds of iridium-silicon complexes, in which a metal-bound silyl group behaves as a Z ligand that maintains a dative bond with the metal centre. This contrasts greatly with the case where this group behaves like an X ligand, that is where this silyl group binds to Ir through a covalent bond. Finally, and most interestingly are silylene ligands that in principle should establish a double bond with the Ir centre. The idea of evaluating and tuning the electrophilic character of the silyl moiety and adjuncts its “silylicity” was probed by experimental and theoretical means. To conduct that scheme, a broad range of metal-silane adducts and other metal-silyl complexes were investigated by the computation of metal-silyl interaction energies to outline the established tools that rationalize the bonding relationship that exists between the metal center and a SiR3 moiety. Also, this research revealed a clear separation between cases in which the Z character of the silyl moiety is the best description, and cases that belong to “classical” situations in which the X character dominates. Moreover, we postulated that for metal-silane adducts that possess a low intrinsic silylicity, a high “silylicity” can be triggered by ligand replacement or by changing in the charge of the complex.While working on this topic, we discovered that in the presence of tetrahydrofuran (THF), [(Ir-H)→SiRH2]+ adducts readily convert by H2 gas elimination at sub-ambient temperature into new THF-stabilized metallacyclic Ir(III)-"silylene" complexes. The emergence of metal silylene complexes via sequential H-Si activations followed by the spontaneous release of H2 featured in this thesis is unique. The primary goal of this thesis finally was to fully characterize those elusive complexes by NMR spectroscopy analyses and X-ray diffraction analysis. Furthermore, theoretical investigations (static DFT-D reaction-energy profiling, ETS-NOCV) and NMR kinetic studies were utilized to demonstrate the role of THF which facilitated H2 elimination. Coupled with silylene metal complex chemistry mentioned above, cationic iridacycle 1b is of interesting catalytic reactivity toward nitro arenes, which can perform the nitro reduction in arenes to give aniline type products.In crafting a new development of this chemistry, it is safe to hypothesize that cationic hydrido-Ir(III)-silylium species, whose catalytic reactivity is of significant correlation with the extend of polarization of the molecule can enhance in the key intermediates the molecule polarization, and therefore increase its catalytic reactivity. Such polarization that occurs already in the Ir-silane adduct stems from the electropositivity of Si centre. Keeping the main ligand backbone constant, introduction of a fluoro substituent can improve the polarization of the same molecule and by way of consequence increase its catalytic reactivity.As expected, F-1a also displays remarkable catalytic reactivity toward a benchmark test reaction that can be followed by piezometry, i.e. the O-dehydrosilylation of alcohols at room temperature with Et3SiH. A hydrido-Ir(III)-silylium intermediate crystal was trapped as well following on a reaction with Et2SiH. In conclusion, based on the discovery of hydrido-Ir(III)-silylium intermediates associated with a comprehensive study of their reactivity and catalytic performance, this thesis has taken steps to advance knowledge of Ir-silicon complexes by synthesis and the full structural characterization of notoriously elusive metal silylene complexes. Also, sophisticated computational methods have been employed to shed light on the mechanism of conversion of Ir-silane adducts into silylenes of which a great number were trapped by reactive recrystallization and subsequently characterized by X-ray diffraction analysis.

Synthesis and Reactivity of Rhodium and Iridium Silyl and Silylene Complexes Supported by PNP Pincer Ligands

Synthesis and Reactivity of Rhodium and Iridium Silyl and Silylene Complexes Supported by PNP Pincer Ligands PDF Author: Elisa E. Calimano
Publisher:
ISBN:
Category :
Languages : en
Pages : 552

Get Book Here

Book Description


Synthesis and Study of Transition Metal Siylene Complexes and Development of Iridium Chemistry Featuring the PhB(CH2PPH2)3- Ligand

Synthesis and Study of Transition Metal Siylene Complexes and Development of Iridium Chemistry Featuring the PhB(CH2PPH2)3- Ligand PDF Author: Jay Dell Feldman
Publisher:
ISBN:
Category :
Languages : en
Pages : 454

Get Book Here

Book Description


Iridium Complexes in Organic Synthesis

Iridium Complexes in Organic Synthesis PDF Author: Luis A. Oro
Publisher: John Wiley & Sons
ISBN: 3527623086
Category : Science
Languages : en
Pages : 424

Get Book Here

Book Description
Ranging from hydrogenation to hydroamination, cycloadditions and nanoparticles, this first handbook to comprehensively cover the topic of iridium in synthesis discusses the important advances in iridium-catalyzed reactions, namely the use of iridium complexes in enantioselective catalysis. A must for organic, complex and catalytic chemists, as well as those working with/on organometallics.

Hydrosilylation

Hydrosilylation PDF Author: Bogdan Marciniec
Publisher: Springer Science & Business Media
ISBN: 1402081723
Category : Science
Languages : en
Pages : 424

Get Book Here

Book Description
For fifty years, Hydrosilylation has been one of the most fundamental and elegant methods for the laboratory and industrial synthesis of organosilicon and silicon related compounds. Despite the intensive research and continued interest generated by organosilicon compounds, no comprehensive book incorporating its various aspects has been published this century. The aim of this book is to comprehensively review the advances of hydrosilylation processes since 1990. The survey of the literature published over the last two decades enables the authors to discuss the most recent aspects of hydrosilylation advances (catalytic and synthetic) and to elucidate the reaction mechanism for the given catalyst used and the reaction utilization. New catalytic pathways under optimum conditions necessary for efficient synthesis of organosilicon compounds are presented. This monograph shows the extensive development in the application of hydrosilylation in organic and asymmetric syntheses and in polymer and material science.

Rearrangements and Reactivity Studies of Cationic Silyliridium Complexes and Development of a Method for Isotopically Labelling C-H Bonds Using an Iridium Catalyst

Rearrangements and Reactivity Studies of Cationic Silyliridium Complexes and Development of a Method for Isotopically Labelling C-H Bonds Using an Iridium Catalyst PDF Author: Steven Raymond Klei
Publisher:
ISBN:
Category :
Languages : en
Pages : 442

Get Book Here

Book Description


Transition-metal Silylene Complexes

Transition-metal Silylene Complexes PDF Author: Steven Krieger Grumbine
Publisher:
ISBN:
Category :
Languages : en
Pages : 384

Get Book Here

Book Description


Organosilicon Compounds, Two volume set

Organosilicon Compounds, Two volume set PDF Author: Vladimir Ya Lee
Publisher: Academic Press
ISBN: 0128143630
Category : Science
Languages : en
Pages : 1436

Get Book Here

Book Description
Organosilicon Compounds provides readers with the state-of-the-art status of organosilicon chemistry, including its theoretical, synthetic, physico-chemical and applied aspects. By including high quality content in a key strategic signing area, this work is a strong addition to chemistry offerings in organic, main group and organometallic research. Organosilicon chemistry deals with compounds containing carbon–silicon bonds, an essential part of organic and organometallic chemistry. This book presents the many milestone in the field that have been discovered during the last few years, also detailing its usage in commercial products, such as sealants, adhesives and coatings. - Features valuable contributions from prominent experts who cover both fundamental (theoretical, synthetic, physico-chemical) and applied (material science, applications) aspects - Covers important breakthroughs in the field, along with historically significant achievements - Includes applied information for a wide range of specialists, from junior and senior researchers (from both academia and industry) working in organometallic, organosilicon, main group element, transition metal, industrial silicon chemistry, and more

Organometallic Chemistry

Organometallic Chemistry PDF Author: Hiroshi Nakazawa
Publisher: Royal Society of Chemistry
ISBN: 1839164212
Category : Science
Languages : en
Pages : 321

Get Book Here

Book Description
Designed for teaching, this English translation of the tried and tested Organometallic Chemistry 2/e textbook from the Japan Society of Coordination Chemistry can be used as an introductory text for chemistry undergraduates and also provide a bridge to more advanced courses. The book is split into two parts, the first acts as a concise introduction to the field, explaining fundamental organometallic chemistry. The latter covers cutting edge theories and applications, suitable for further study. Beginning with fundamental reaction patterns concerning bonds between transition metals and carbon atoms, the authors show how these may be combined to achieve a desired reaction and/or construct a catalytic cycle. To understand the basics and make effective use of the knowledge, numerous practice questions and model answers to encourage the reader’s deeper understanding are included. The advanced section covers the chemistry relating to bonds between transition metals and main group elements, such as Si, N, P, O and S, is described. This chemistry has some similarities to transition metal-carbon chemistry, but also many differences and unique aspects, which the book explains clearly. Organometallic complexes are now well known and widely used. In addition, transition metal complexes with main group element other than carbon as a ligating atom are becoming more important. It is thus important to have a bird’s-eye view of transition metal complexes, regardless of the ligand type. This book acts as solid introduction for chemistry students and newcomers in various fields who need to deal with transition metal complexes.

Organosilicon Compounds

Organosilicon Compounds PDF Author: Vladimir Ya Lee
Publisher: Academic Press
ISBN: 0128019913
Category : Science
Languages : en
Pages : 758

Get Book Here

Book Description
Organosilicon Compounds: Theory and Experiment (Synthesis), volume 1, comprises two parts. The first part, Theory, covers state-of-the-art computational treatments of unusual nonstandard organosilicon compounds that classical bonding theory fails to describe adequately. The second part, Experiment (Synthesis), describes recent synthetic advances in the preparation of a variety of organosilicon compounds with different coordination numbers of the central silicon: from tetracoordinate to low-coordinate to hypercoordinate derivatives. Organosilicon Compounds: From Theory to Synthesis to Applications provides a comprehensive overview of this important area of organic and organometallic chemistry, dealing with compounds containing carbon–silicon bonds. This field, which includes compounds that are widely encountered in commercial products such as in the fabrication of sealants, adhesives, and coatings, has seen many milestone discoveries reported during the last two decades. Beginning with the theoretical aspects of organosilicon compounds' structure and bonding, the book then explores their synthetic aspects, including main group element organosilicon compounds, transition metal complexes, silicon cages and clusters, low-coordinate organosilicon derivatives (cations, radicals, anions, multiple bonds to silicon, silaaromatics), and more. Next, readers will find valuable sections that explore physical and chemical properties of organosilicon compounds by means of X-ray crystallography, 29Si NMR spectroscopy, photoelectron spectroscopy, and other methods. Finally, the work delves into applications for industrial uses and in many related fields, such as polymers, material science, nanotechnology, bioorganics, and medicinal silicon chemistry. - Features valuable contributions from prominent experts that cover both fundamental (theoretical, synthetic, physico-chemical) and applied (material science, applications) aspects of modern organosilicon chemistry - Covers important breakthroughs in the field, along with the historically significant achievements of the past - Includes applied information for a wide range of specialists, from junior and senior researchers (from both academia and industry) - Ideal reference for those working in organometallic, organosilicon, main group element, transition metal, and industrial silicon chemistry, as well as those from interdisciplinary fields, such as polymer, material science, and nanotechnology