Investigation of Experimental and Numerical Methods, and Analysis of Stator Clocking and Instabilities in a High-speed Multistage Compressor

Investigation of Experimental and Numerical Methods, and Analysis of Stator Clocking and Instabilities in a High-speed Multistage Compressor PDF Author: Johannes Schreiber
Publisher:
ISBN:
Category :
Languages : en
Pages : 214

Get Book Here

Book Description
The following experimental and numerical investigations aim at the deep understanding of the flow field in the 3.5 stages high-speed axial compressor CREATE, studied on a 2 MW test rig at the Laboratory of Fluid Mechanics and Acoustics (LMFA) in Lyon, France. This work focuses on three major objectives: Firstly, a global description of the flow field with an identification of limitations to the used exploration methods; Secondly, the characterization of the effect of stator-stator clocking in a high-speed compressor; Thirdly, the identification of instabilities arising at low mass flow rates for confirming studies on low-speed compressors and giving new insights.This work demonstrates that a mis-interpretation of steady performance data occurs easily due to measurement constraints and correction coefficients are proposed. At certain locations in the compressor, the flow field exploration (experimental and numerical) methods are identified to be challenged. This identification will initiate further development of the methods. The main mis-predictions of the simulations concern the over-prediction of the blockage induced by the tip leakage flow and eventually an over-predicted pressure rise. Furthermore, the measurements provided by the pneumatic pressure probes over-estimate the static pressure upstream of the stators. This error is induced by the interaction between the stator potential field and the probe it-self. In addition, the laser Doppler anemometry method over-estimates the velocity downstream the stators. The transport of the rotor wakes through the stators might not be correctly captured with the seeding particles in this high-speed compressor.The investigation of the stator clocking reveals only a small global effect within the measurement uncertainty band. Several contributions to the weak effect of clocking are identified by analysis of the flow structure transport, namely the time-mean mixing out of the stator wakes and the deformation of wakes along their flow path. The local effect of clocking depends on the span-height because of the variation of the circumferential position of the stator wakes and the stator blade shape over the span-height. Local possible positive and negative effects of clocking are identified and are shown to be almost in balance in this compressor. Furthermore, this work demonstrates that the unsteadiness in the flow field is not linked conclusively to the stator clocking.In this compressor, the arising instabilities depend on the operating point and flow field exploration methods. At stable operating points and nominal compressor speed, the numerical results reveal a rotating disturbance in the rotors 2 and 3, whereas the measurements show a rotating disturbance only in the first rotor and only at part speed. In both cases the disturbance exhibits rotating instability like characteristics. An exhaustive numerical study allows to exclude the commonly assumed influence of rotor-stator interactions on the rotating disturbance and pinpoints its source. New insights into the stable behavior and periodicity of the measured rotating instability are derived contrary to the unstable behavior suggested by the naming and literature. This disturbance is shown to evolve into rotating stall cells when approaching the stability limit. At nominal compressor speed, a spike type surge inception is identified I n the measured field. A precise description of the abrupt onset of the spike cell and its difference to a rotating stall cell are presented.

Investigation of Experimental and Numerical Methods, and Analysis of Stator Clocking and Instabilities in a High-speed Multistage Compressor

Investigation of Experimental and Numerical Methods, and Analysis of Stator Clocking and Instabilities in a High-speed Multistage Compressor PDF Author: Johannes Schreiber
Publisher:
ISBN:
Category :
Languages : en
Pages : 214

Get Book Here

Book Description
The following experimental and numerical investigations aim at the deep understanding of the flow field in the 3.5 stages high-speed axial compressor CREATE, studied on a 2 MW test rig at the Laboratory of Fluid Mechanics and Acoustics (LMFA) in Lyon, France. This work focuses on three major objectives: Firstly, a global description of the flow field with an identification of limitations to the used exploration methods; Secondly, the characterization of the effect of stator-stator clocking in a high-speed compressor; Thirdly, the identification of instabilities arising at low mass flow rates for confirming studies on low-speed compressors and giving new insights.This work demonstrates that a mis-interpretation of steady performance data occurs easily due to measurement constraints and correction coefficients are proposed. At certain locations in the compressor, the flow field exploration (experimental and numerical) methods are identified to be challenged. This identification will initiate further development of the methods. The main mis-predictions of the simulations concern the over-prediction of the blockage induced by the tip leakage flow and eventually an over-predicted pressure rise. Furthermore, the measurements provided by the pneumatic pressure probes over-estimate the static pressure upstream of the stators. This error is induced by the interaction between the stator potential field and the probe it-self. In addition, the laser Doppler anemometry method over-estimates the velocity downstream the stators. The transport of the rotor wakes through the stators might not be correctly captured with the seeding particles in this high-speed compressor.The investigation of the stator clocking reveals only a small global effect within the measurement uncertainty band. Several contributions to the weak effect of clocking are identified by analysis of the flow structure transport, namely the time-mean mixing out of the stator wakes and the deformation of wakes along their flow path. The local effect of clocking depends on the span-height because of the variation of the circumferential position of the stator wakes and the stator blade shape over the span-height. Local possible positive and negative effects of clocking are identified and are shown to be almost in balance in this compressor. Furthermore, this work demonstrates that the unsteadiness in the flow field is not linked conclusively to the stator clocking.In this compressor, the arising instabilities depend on the operating point and flow field exploration methods. At stable operating points and nominal compressor speed, the numerical results reveal a rotating disturbance in the rotors 2 and 3, whereas the measurements show a rotating disturbance only in the first rotor and only at part speed. In both cases the disturbance exhibits rotating instability like characteristics. An exhaustive numerical study allows to exclude the commonly assumed influence of rotor-stator interactions on the rotating disturbance and pinpoints its source. New insights into the stable behavior and periodicity of the measured rotating instability are derived contrary to the unstable behavior suggested by the naming and literature. This disturbance is shown to evolve into rotating stall cells when approaching the stability limit. At nominal compressor speed, a spike type surge inception is identified I n the measured field. A precise description of the abrupt onset of the spike cell and its difference to a rotating stall cell are presented.

Experimental Analysis of the Unsteady Flow and Instabilities in a High-speed Multistage Compressor

Experimental Analysis of the Unsteady Flow and Instabilities in a High-speed Multistage Compressor PDF Author: Nicolas Courtiade
Publisher:
ISBN:
Category :
Languages : en
Pages : 195

Get Book Here

Book Description
The present work is a result of collaboration between the LMFA (Laboratoire de Mécanique des Fluides et d'Acoustique, Ecole Centrale de Lyon - France), Snecma and the Cerfacs. It aims at studying the flow in the 3.5-stages high-speed axial compressor CREATE (Compresseur de Recherche pour l'Etude des effets Aérodynamique et TEchnologique - rotation speed: 11543 RPM, Rotor 1 tip speed: 313 m/s), designed and built by Snecma and investigated at LMFA on a 2-MW test rig. Steady measurements, as well as laser velocimetry, fast-response wall static and total pressure measurements have been used to experimentally investigate the flow. The analysis focuses on two main aspects: the study of the flow at stable operating points, with a special interest on the rotor-stator interactions, and the study of the instabilities arising in the machine at low mass flow rates.The description of the unsteady flow field at stable operating points is done through measurements of wall-static pressure, total pressure and velocity, but also total temperature, entropy and angle of the fluid. It is shown that the complexity and unsteadiness of the flow in a multistage compressor strongly increases in the rear part of the machine, because of the interactions between steady and rotating rows. Therefore, a modal analysis method developed at LMFA and based on the decomposition of Tyler and Sofrin is presented to analyze these interactions. It is first applied to the pressure measurements, in order to extract the contributions of each row. It shows that all the complex pressure interactions in CREATE can be reduced to three main types of interactions. The decomposition method is then applied to the entropy field extracted from URANS CFD calculations performed by the Cerfacs, in order to evaluate the impact of the interactions on the performance of the machine in term of production of losses.The last part of this work is devoted to the analysis of the instabilities arising in CREATE at low mass flows. It shows that rotating pressure waves appear at stable operating points, and increase in amplitude when going towards the surge line, until reaching a critical size provoking the onset a full span stall cell bringing the machine to surge within a few rotor revolutions. The study of these pressure waves, and the understanding of their true nature is achieved through the experimental results and the use of some analytical models. A precise description of the surge transient through wall-static pressure measurements above the rotors is also provided, as well as a description of a complete surge cycle. An anti-surge control system based on the detection of the amplitude of the pressure waves is finally proposed.

Analytical and Experimental Investigation of Rotating Stall Phenomena in Turbine Engine Compressors

Analytical and Experimental Investigation of Rotating Stall Phenomena in Turbine Engine Compressors PDF Author:
Publisher:
ISBN:
Category : Compressors
Languages : en
Pages : 170

Get Book Here

Book Description


Numerical and Experimental Investigation of Secondary Flow in a High Speed Compressor Stator

Numerical and Experimental Investigation of Secondary Flow in a High Speed Compressor Stator PDF Author: Y. Ohkita
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Presented at the International Gas Turbine and Aeroengine Congress and Exposition, Houston, TX, Jun 5-8, 1995.

International Aerospace Abstracts

International Aerospace Abstracts PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1020

Get Book Here

Book Description


Compressor Instability with Integral Methods

Compressor Instability with Integral Methods PDF Author: Eddie Y.K. Ng
Publisher: Springer Science & Business Media
ISBN: 3540724125
Category : Technology & Engineering
Languages : en
Pages : 154

Get Book Here

Book Description
This book brings together the quick integral approaches and advances in the field for the prediction of stall and surge problems in the compressor. The book is useful for people involved in the flow analysis, design and testing of rotating machinery. For students, it can be used as a specialized topic of senior undergraduate or graduate study. The book can also serve as self-study material.

An Experimental Investigation of Stator/rotor Interaction Influence on Multistage Compressor Rotor Flow

An Experimental Investigation of Stator/rotor Interaction Influence on Multistage Compressor Rotor Flow PDF Author: Theodore Hisao Okiishi
Publisher:
ISBN:
Category : Axial flow compressors
Languages : en
Pages : 16

Get Book Here

Book Description


An Experimental and Numerical Investigation of Stator-rotor Interactions in a Transonic Compressor

An Experimental and Numerical Investigation of Stator-rotor Interactions in a Transonic Compressor PDF Author: Steven Ernest Gorrell
Publisher:
ISBN:
Category :
Languages : en
Pages : 260

Get Book Here

Book Description
At close spacing the rotor bow shock is actually chopped by the stator trailing edge forming a pressure wave on the upper surface of the stator that propagates upstream until it weakens. In the reference frame relative to this pressure wave, the flow is supersonic and a moving shock wave exists that produces an entropy rise. The lower efficiency, pressure ratio, and mass flow rate measured at close spacing is a result of this extra loss. The magnitude of loss production is affected by the strength of the bow shock at the location it interacts with the trailing edge of the stator. Furthermore, the more blades present in the stator the more loss producing interactions take place. At far spacing the rotor bow shock has degenerated into a bow wave where it interacts with the stator trailing edge and is not chopped, therefore no pressure wave forms on the wake generator upper surface.

Numerical and Experimental Investigation of Instability Inception in a High-speed Axial-flow Compressor Using Chaos Theory

Numerical and Experimental Investigation of Instability Inception in a High-speed Axial-flow Compressor Using Chaos Theory PDF Author: Tsuguji Nakano
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


An Experimental Investigation of Stator/rotor Interaction Influence on Multistage Compressor Rotor Flow

An Experimental Investigation of Stator/rotor Interaction Influence on Multistage Compressor Rotor Flow PDF Author: Daniel Lawrence Tweedt
Publisher:
ISBN:
Category : Axial flow compressors
Languages : en
Pages : 64

Get Book Here

Book Description