Investigating the Effect of Zirconium Oxide Microstructure on Corrosion Performance

Investigating the Effect of Zirconium Oxide Microstructure on Corrosion Performance PDF Author: Alistair Garner
Publisher:
ISBN:
Category : Microstructure
Languages : en
Pages : 33

Get Book Here

Book Description
Scanning precession electron diffraction in the transmission electron microscope has been used to simultaneously map the phase, orientation, and grain morphology of oxides formed on Zircaloy-2 after three and six cycles in a boiling water reactor in unprecedented detail. For comparison, a region of a preoxidized autoclave-formed oxide was also proton-irradiated at the Dalton Cumbrian Facility. The proton irradiation was observed to cause additional stabilization of the tetragonal phase that was attributed to the stabilizing effect of irradiation-induced defects in the oxide. In the reactor-formed oxides, no extra stabilization of the tetragonal grains was observed under neutron irradiation, as indicated by the similar tetragonal phase fraction and transformation twin-boundary distributions between the nonirradiated and reactor-formed oxides. It is suggested that the damage rate is too low in the newly formed oxide to cause significant stabilization of the tetragonal phase. This technique also reveals that the oxide formed under reactor conditions has a more heterogeneous microstructure, and the growth of well-oriented columnar monoclinic grains is significantly reduced compared with a nonirradiated oxide. High-angle annular dark-field scanning transmission electron microscopy also revealed the development of extensive networks of intergranular porosity and eventually grain decohesion in the reactor-formed oxides. These results suggest that the tetragonal-monoclinic transformation is not responsible for the accelerated corrosion exhibited under reactor conditions. It is proposed that the usual out-of-reactor oxide growth and nucleation processes are significantly modified under reactor conditions, resulting in a more heterogeneous and randomly oriented oxide microstructure with reduced columnar grain growth. It is suggested that this disordered oxide microstructure allows for the formation of extensive intergranular porosity that could lead to accelerated in-reactor corrosion.

Investigating the Effect of Zirconium Oxide Microstructure on Corrosion Performance

Investigating the Effect of Zirconium Oxide Microstructure on Corrosion Performance PDF Author: Alistair Garner
Publisher:
ISBN:
Category : Microstructure
Languages : en
Pages : 33

Get Book Here

Book Description
Scanning precession electron diffraction in the transmission electron microscope has been used to simultaneously map the phase, orientation, and grain morphology of oxides formed on Zircaloy-2 after three and six cycles in a boiling water reactor in unprecedented detail. For comparison, a region of a preoxidized autoclave-formed oxide was also proton-irradiated at the Dalton Cumbrian Facility. The proton irradiation was observed to cause additional stabilization of the tetragonal phase that was attributed to the stabilizing effect of irradiation-induced defects in the oxide. In the reactor-formed oxides, no extra stabilization of the tetragonal grains was observed under neutron irradiation, as indicated by the similar tetragonal phase fraction and transformation twin-boundary distributions between the nonirradiated and reactor-formed oxides. It is suggested that the damage rate is too low in the newly formed oxide to cause significant stabilization of the tetragonal phase. This technique also reveals that the oxide formed under reactor conditions has a more heterogeneous microstructure, and the growth of well-oriented columnar monoclinic grains is significantly reduced compared with a nonirradiated oxide. High-angle annular dark-field scanning transmission electron microscopy also revealed the development of extensive networks of intergranular porosity and eventually grain decohesion in the reactor-formed oxides. These results suggest that the tetragonal-monoclinic transformation is not responsible for the accelerated corrosion exhibited under reactor conditions. It is proposed that the usual out-of-reactor oxide growth and nucleation processes are significantly modified under reactor conditions, resulting in a more heterogeneous and randomly oriented oxide microstructure with reduced columnar grain growth. It is suggested that this disordered oxide microstructure allows for the formation of extensive intergranular porosity that could lead to accelerated in-reactor corrosion.

Investigating the Effect of Oxide Texture on the Corrosion Performance of Zirconium Alloys

Investigating the Effect of Oxide Texture on the Corrosion Performance of Zirconium Alloys PDF Author: Alistair John Garner
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Zirconium in the Nuclear Industry

Zirconium in the Nuclear Industry PDF Author: Gerry D. Moan
Publisher: ASTM International
ISBN: 0803128959
Category : Nuclear fuel claddings
Languages : en
Pages : 891

Get Book Here

Book Description
Annotation The 41 papers of this proceedings volume were first presented at the 13th symposium on Zirconium in the Nuclear Industry held in Annecy, France in June of 2001. Many of the papers are devoted to material related issues, corrosion and hydriding behavior, in-reactor studies, and the behavior and properties of Zr alloys used in storing spent fuel. Some papers report on studies of second phase particles, irradiation creep and growth, and material performance during loss of coolant and reactivity initiated accidents. Annotation copyrighted by Book News, Inc., Portland, OR.

Effect of Texture and Microstructure of Zircnoium [sic] Alloys on Their Oxidation and Oxide Texture

Effect of Texture and Microstructure of Zircnoium [sic] Alloys on Their Oxidation and Oxide Texture PDF Author: Jianlong Lin
Publisher:
ISBN:
Category :
Languages : en
Pages : 302

Get Book Here

Book Description


Recueil factice d'articles de presse concernant "La Légende de Sainte-Elisabeth", de Liszt

Recueil factice d'articles de presse concernant Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Get Book Here

Book Description


Zirconium in the Nuclear Industry

Zirconium in the Nuclear Industry PDF Author: George P. Sabol
Publisher: ASTM International
ISBN: 0803124066
Category : Nuclear fuel claddings
Languages : en
Pages : 907

Get Book Here

Book Description


Effect of Water Chemistry and Composition on Microstructural Evolution of Oxide on Zr Alloys

Effect of Water Chemistry and Composition on Microstructural Evolution of Oxide on Zr Alloys PDF Author: B. X. Zhou
Publisher:
ISBN:
Category : Corrosion
Languages : en
Pages : 24

Get Book Here

Book Description
The microstructure of oxide films formed on Zircaloy-4 and Alloy No. 3, which has a composition similar to ZIRLOTM, was investigated by high resolution transmission and scanning electron microscopy, and by scanning probe microscopy after corrosion tests performed at 360°C/18.6 MPa in deionized water or lithiated water with 0.01 M LiOH. The microstructural evolution of the oxide films was analyzed by comparing the microstructure at different depths in the oxide layer. The defects, consisting of vacancies and interstitials, such as points, lines, planes, and volumes, were produced during the oxide growth. Monoclinic, tetragonal, cubic, and amorphous phases were detected and their coherent relationships were identified. The characteristic of oxide with such microstructure had an internal cause, and the temperature and time were the external causes that induced the microstructural evolution during the corrosion process. The diffusion, annihilation, and condensation of vacancies and interstitials under the action of stress, temperature, and time caused stress relaxation and phase transformation. It was observed, in the middle of the oxide layer, that the vacancies absorbed by grain boundaries formed pores to weaken the bonding strength between grains. Pores formed under compressive stress lined up along the direction parallel to the compressive stress. Thus, cracks developed from the pores were parallel to the oxide/metal interface. Li+ and OH- incorporated in oxide films were adsorbed on the wall of pores or entered into vacancies to reduce the surface free energy of the zirconium oxide during exposure in lithiated water. As a result, the diffusion of vacancies and the formation of pores were enhanced, inducing the degradation of the corrosion resistance. The relationship between the corrosion resistance of zirconium alloys and the microstructural evolution of oxide films affected by water chemistry and composition is also discussed.

High-temperature Water and Steam-corrosion Behavior of Zirconium-uranium Alloys

High-temperature Water and Steam-corrosion Behavior of Zirconium-uranium Alloys PDF Author: Stanley Kass
Publisher:
ISBN:
Category : Uranium alloys
Languages : en
Pages : 28

Get Book Here

Book Description


Plasma Electrolytic Oxidation (PEO) Coatings

Plasma Electrolytic Oxidation (PEO) Coatings PDF Author: Marta Mohedano
Publisher: MDPI
ISBN: 3036505520
Category : Science
Languages : en
Pages : 172

Get Book Here

Book Description
Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), functionalizes surfaces, improving the mechanical, thermal, and corrosion performance of metallic substrates, along with other tailored properties (e.g., biocompatibility, catalysis, antibacterial response, self-lubrication, etc.). The extensive field of applications of this technique ranges from structural components, in particular, in the transport sector, to more advanced fields, such as bioengineering. The present Special Issue covers the latest advances in PEO‐coated light alloys for structural (Al, Mg) and biomedical applications (Ti, Mg), with 10 research papers and 1 review from leading research groups around the world.

Examinations of the Corrosion Mechanism of Zirconium Alloys

Examinations of the Corrosion Mechanism of Zirconium Alloys PDF Author: HJ. Beie
Publisher:
ISBN:
Category : Barrier layer
Languages : en
Pages : 29

Get Book Here

Book Description
Several mechanism-related aspects of the corrosion of zirconium alloys have been investigated using different examination techniques. The microstructure of different types of oxide layers was analyzed by transmission electron microscopy (TEM). Uniform oxide mainly consists of m-ZrO2 and a smaller fraction of t-ZrO2 with columnar grains and some amount of equiaxed crystallites. Nodular oxides show a high open porosity and the grain shape tends to the equiaxed type. A fine network of pores along grain boundaries was found in oxides grown in water containing lithium. An enrichment of lithium within such oxides could be found by glow discharge optical spectroscopy (GD-OES) depth profiling. In all oxides, a compact, void-free oxide layer was observed at the metal/oxide interface. Compressive stresses within the oxide layer measured by an X-ray diffraction technique were significantly higher compared to previously published values. Electrical potential measurements on oxide scales showed the influence of the intermetallic precipitates on the potential drop across the oxide. In long-time corrosion tests of Zircaloy with varying temperatures, memory effects caused by the cyclic formation of barrier layers could be observed. It was concluded that the corrosion mechanism of zirconium-based alloys is a barrier-layer controlled process. The protective properties of this barrier layer determine the overall corrosion resistance of zirconium alloys.