Inverse Methods in Physical Oceanography

Inverse Methods in Physical Oceanography PDF Author: Andrew F. Bennett
Publisher: Cambridge University Press
ISBN: 0521385687
Category : Mathematics
Languages : en
Pages : 369

Get Book Here

Book Description
Observations of ocean circulation have increased as a result of international field programmes and of remote sensing systems on artificial earth satellites. Oceanographers are increasingly turning to inverse methods for combining these observations with numerical models of ocean circulation. Professor Bennett's work explores the potential for inverse theory, emphasizing possibilities rather than expedient or rudimentary applications. In addition to interpolating the data and adding realism to the model solutions, the methods can yield estimates for unobserved flow variables, forcing fields, and model parameters. Inverse formulations can resolve ill-posed modelling problems, lead to design criteria for oceanic observing systems, and enable the testing of models as scientific hypothesis. Exercises of varying difficulty rehearse technical skills and supplement the central theoretical development. Thus this book will be invaluable for environmental scientists and engineers, advanced undergraduates in applied mathematics, and graduate students in physical oceanography.

Data Analysis Methods in Physical Oceanography

Data Analysis Methods in Physical Oceanography PDF Author: Richard E. Thomson
Publisher: Elsevier
ISBN: 0080477003
Category : Science
Languages : en
Pages : 654

Get Book Here

Book Description
Data Analysis Methods in Physical Oceanography is a practical referenceguide to established and modern data analysis techniques in earth and oceansciences. This second and revised edition is even more comprehensive with numerous updates, and an additional appendix on 'Convolution and Fourier transforms'. Intended for both students and established scientists, the fivemajor chapters of the book cover data acquisition and recording, dataprocessing and presentation, statistical methods and error handling,analysis of spatial data fields, and time series analysis methods. Chapter 5on time series analysis is a book in itself, spanning a wide diversity oftopics from stochastic processes and stationarity, coherence functions,Fourier analysis, tidal harmonic analysis, spectral and cross-spectralanalysis, wavelet and other related methods for processing nonstationarydata series, digital filters, and fractals. The seven appendices includeunit conversions, approximation methods and nondimensional numbers used ingeophysical fluid dynamics, presentations on convolution, statisticalterminology, and distribution functions, and a number of importantstatistical tables. Twenty pages are devoted to references. Featuring:• An in-depth presentation of modern techniques for the analysis of temporal and spatial data sets collected in oceanography, geophysics, and other disciplines in earth and ocean sciences.• A detailed overview of oceanographic instrumentation and sensors - old and new - used to collect oceanographic data.• 7 appendices especially applicable to earth and ocean sciences ranging from conversion of units, through statistical tables, to terminology and non-dimensional parameters. In praise of the first edition: "(...)This is a very practical guide to the various statistical analysis methods used for obtaining information from geophysical data, with particular reference to oceanography(...)The book provides both a text for advanced students of the geophysical sciences and a useful reference volume for researchers." Aslib Book Guide Vol 63, No. 9, 1998 "(...)This is an excellent book that I recommend highly and will definitely use for my own research and teaching." EOS Transactions, D.A. Jay, 1999 "(...)In summary, this book is the most comprehensive and practical source of information on data analysis methods available to the physical oceanographer. The reader gets the benefit of extremely broad coverage and an excellent set of examples drawn from geographical observations." Oceanography, Vol. 12, No. 3, A. Plueddemann, 1999 "(...)Data Analysis Methods in Physical Oceanography is highly recommended for a wide range of readers, from the relative novice to the experienced researcher. It would be appropriate for academic and special libraries." E-Streams, Vol. 2, No. 8, P. Mofjelf, August 1999

The Ocean Circulation Inverse Problem

The Ocean Circulation Inverse Problem PDF Author: Carl Wunsch
Publisher: Cambridge University Press
ISBN: 9780521480901
Category : Mathematics
Languages : en
Pages : 466

Get Book Here

Book Description
This book addresses the problem of inferring the state of the ocean circulation, from a mathematical perspective.

Inverse Modeling of the Ocean and Atmosphere

Inverse Modeling of the Ocean and Atmosphere PDF Author: Andrew F. Bennett
Publisher: Cambridge University Press
ISBN: 1139434535
Category : Science
Languages : en
Pages : 260

Get Book Here

Book Description
Inverse Modeling of the Ocean and Atmosphere is a graduate-level book for students of oceanography and meteorology, and anyone interested in combining computer models and observations of the hydrosphere or solid earth. A step-by-step development of maximally efficient inversion algorithms, using ideal models, is complemented by computer codes and comprehensive details for realistic models. Variational tools and statistical concepts are concisely introduced, and applications to contemporary research models, together with elaborate observing systems, are examined in detail. The book offers a review of the various alternative approaches, and further advanced research topics are discussed. Derived from the author's lecture notes, this book constitutes an ideal course companion for graduate students, as well as being a valuable reference source for researchers and managers in theoretical earth science, civil engineering and applied mathematics.

Discrete Inverse and State Estimation Problems

Discrete Inverse and State Estimation Problems PDF Author: Carl Wunsch
Publisher: Cambridge University Press
ISBN: 1139456938
Category : Science
Languages : en
Pages : 357

Get Book Here

Book Description
Addressing the problems of making inferences from noisy observations and imperfect theories, this 2006 book introduces many inference tools and practical applications. Starting with fundamental algebraic and statistical ideas, it is ideal for graduate students and researchers in oceanography, climate science, and geophysical fluid dynamics.

Modeling Methods for Marine Science

Modeling Methods for Marine Science PDF Author: David M. Glover
Publisher: Cambridge University Press
ISBN: 1139500716
Category : Science
Languages : en
Pages : 589

Get Book Here

Book Description
This advanced textbook on modeling, data analysis and numerical techniques for marine science has been developed from a course taught by the authors for many years at the Woods Hole Oceanographic Institute. The first part covers statistics: singular value decomposition, error propagation, least squares regression, principal component analysis, time series analysis and objective interpolation. The second part deals with modeling techniques: finite differences, stability analysis and optimization. The third part describes case studies of actual ocean models of ever increasing dimensionality and complexity, starting with zero-dimensional models and finishing with three-dimensional general circulation models. Throughout the book hands-on computational examples are introduced using the MATLAB programming language and the principles of scientific visualization are emphasised. Ideal as a textbook for advanced students of oceanography on courses in data analysis and numerical modeling, the book is also an invaluable resource for a broad range of scientists undertaking modeling in chemical, biological, geological and physical oceanography.

Physical Oceanography

Physical Oceanography PDF Author: Reza Malek-Madani
Publisher: CRC Press
ISBN: 1439898294
Category : Mathematics
Languages : en
Pages : 454

Get Book Here

Book Description
Accessible to advanced undergraduate students, Physical Oceanography: A Mathematical Introduction with MATLAB demonstrates how to use the basic tenets of multivariate calculus to derive the governing equations of fluid dynamics in a rotating frame. It also explains how to use linear algebra and partial differential equations (PDEs) to solve basic i

Statistics and Physical Oceanography

Statistics and Physical Oceanography PDF Author: National Research Council (U.S.). Committee on Applied and Theoretical Statistics. Panel on Statistics and Oceanography
Publisher: National Academies
ISBN:
Category : Oceanography
Languages : en
Pages : 76

Get Book Here

Book Description


50 Years of Ocean Discovery

50 Years of Ocean Discovery PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309172578
Category : Science
Languages : en
Pages : 283

Get Book Here

Book Description
This book describes the development of ocean sciences over the past 50 years, highlighting the contributions of the National Science Foundation (NSF) to the field's progress. Many of the individuals who participated in the exciting discoveries in biological oceanography, chemical oceanography, physical oceanography, and marine geology and geophysics describe in the book how the discoveries were made possible by combinations of insightful individuals, new technology, and in some cases, serendipity. In addition to describing the advance of ocean science, the book examines the institutional structures and technology that made the advances possible and presents visions of the field's future. This book is the first-ever documentation of the history of NSF's Division of Ocean Sciences, how the structure of the division evolved to its present form, and the individuals who have been responsible for ocean sciences at NSF as "rotators" and career staff over the past 50 years.

Geophysical Inverse Theory

Geophysical Inverse Theory PDF Author: Robert L. Parker
Publisher: Princeton University Press
ISBN: 069120683X
Category : Science
Languages : en
Pages : 400

Get Book Here

Book Description
In many physical sciences, the most natural description of a system is with a function of position or time. In principle, infinitely many numbers are needed to specify that function, but in practice only finitely many measurements can be made. Inverse theory concerns the mathematical techniques that enable researchers to use the available information to build a model of the unknown system or to determine its essential properties. In Geophysical Inverse Theory, Robert Parker provides a systematic development of inverse theory at the graduate and professional level that emphasizes a rigorous yet practical solution of inverse problems, with examples from experimental observations in geomagnetism, seismology, gravity, electromagnetic sounding, and interpolation. Although illustrated with examples from geophysics, this book has broad implications for researchers in applied disciplines from materials science and engineering to astrophysics, oceanography, and meteorology. Parker's approach is to avoid artificial statistical constructs and to emphasize instead the reasonable assumptions researchers must make to reduce the ambiguity that inevitably arises in complex problems. The structure of the book follows a natural division in the subject into linear theory, in which the measured quantities are linear functionals of the unknown models, and nonlinear theory, which covers all other systems but is not nearly so well understood. The book covers model selection as well as techniques for drawing firm conclusions about the earth independent of any particular model.