Invariant Theory

Invariant Theory PDF Author: T.A. Springer
Publisher: Springer
ISBN: 3540373705
Category : Mathematics
Languages : en
Pages : 118

Get Book Here

Book Description

Invariant Theory

Invariant Theory PDF Author: T.A. Springer
Publisher: Springer
ISBN: 3540373705
Category : Mathematics
Languages : en
Pages : 118

Get Book Here

Book Description


Lectures on Invariant Theory

Lectures on Invariant Theory PDF Author: Igor Dolgachev
Publisher: Cambridge University Press
ISBN: 9780521525480
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.

Algorithms in Invariant Theory

Algorithms in Invariant Theory PDF Author: Bernd Sturmfels
Publisher: Springer Science & Business Media
ISBN: 3211774173
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
This book is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to research ideas, hints for applications, outlines and details of algorithms, examples and problems.

Computational Invariant Theory

Computational Invariant Theory PDF Author: Harm Derksen
Publisher: Springer Science & Business Media
ISBN: 3662049589
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
This book, the first volume of a subseries on "Invariant Theory and Algebraic Transformation Groups", provides a comprehensive and up-to-date overview of the algorithmic aspects of invariant theory. Numerous illustrative examples and a careful selection of proofs make the book accessible to non-specialists.

Reflection Groups and Invariant Theory

Reflection Groups and Invariant Theory PDF Author: Richard Kane
Publisher: Springer Science & Business Media
ISBN: 1475735421
Category : Mathematics
Languages : en
Pages : 382

Get Book Here

Book Description
Reflection groups and invariant theory is a branch of mathematics that lies at the intersection between geometry and algebra. The book contains a deep and elegant theory, evolved from various graduate courses given by the author over the past 10 years.

Algebraic Homogeneous Spaces and Invariant Theory

Algebraic Homogeneous Spaces and Invariant Theory PDF Author: Frank D. Grosshans
Publisher: Springer
ISBN: 3540696172
Category : Mathematics
Languages : en
Pages : 158

Get Book Here

Book Description
The invariant theory of non-reductive groups has its roots in the 19th century but has seen some very interesting developments in the past twenty years. This book is an exposition of several related topics including observable subgroups, induced modules, maximal unipotent subgroups of reductive groups and the method of U-invariants, and the complexity of an action. Much of this material has not appeared previously in book form. The exposition assumes a basic knowledge of algebraic groups and then develops each topic systematically with applications to invariant theory. Exercises are included as well as many examples, some of which are related to geometry and physics.

Geometric Invariant Theory

Geometric Invariant Theory PDF Author: Nolan R. Wallach
Publisher: Springer
ISBN: 3319659073
Category : Mathematics
Languages : en
Pages : 199

Get Book Here

Book Description
Geometric Invariant Theory (GIT) is developed in this text within the context of algebraic geometry over the real and complex numbers. This sophisticated topic is elegantly presented with enough background theory included to make the text accessible to advanced graduate students in mathematics and physics with diverse backgrounds in algebraic and differential geometry. Throughout the book, examples are emphasized. Exercises add to the reader’s understanding of the material; most are enhanced with hints. The exposition is divided into two parts. The first part, ‘Background Theory’, is organized as a reference for the rest of the book. It contains two chapters developing material in complex and real algebraic geometry and algebraic groups that are difficult to find in the literature. Chapter 1 emphasizes the relationship between the Zariski topology and the canonical Hausdorff topology of an algebraic variety over the complex numbers. Chapter 2 develops the interaction between Lie groups and algebraic groups. Part 2, ‘Geometric Invariant Theory’ consists of three chapters (3–5). Chapter 3 centers on the Hilbert–Mumford theorem and contains a complete development of the Kempf–Ness theorem and Vindberg’s theory. Chapter 4 studies the orbit structure of a reductive algebraic group on a projective variety emphasizing Kostant’s theory. The final chapter studies the extension of classical invariant theory to products of classical groups emphasizing recent applications of the theory to physics.

Classical Invariant Theory

Classical Invariant Theory PDF Author: Peter J. Olver
Publisher: Cambridge University Press
ISBN: 9780521558211
Category : Mathematics
Languages : en
Pages : 308

Get Book Here

Book Description
The book is a self-contained introduction to the results and methods in classical invariant theory.

Modular Invariant Theory

Modular Invariant Theory PDF Author: H.E.A. Eddy Campbell
Publisher: Springer Science & Business Media
ISBN: 3642174043
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
This book covers the modular invariant theory of finite groups, the case when the characteristic of the field divides the order of the group, a theory that is more complicated than the study of the classical non-modular case. Largely self-contained, the book develops the theory from its origins up to modern results. It explores many examples, illustrating the theory and its contrast with the better understood non-modular setting. It details techniques for the computation of invariants for many modular representations of finite groups, especially the case of the cyclic group of prime order. It includes detailed examples of many topics as well as a quick survey of the elements of algebraic geometry and commutative algebra as they apply to invariant theory. The book is aimed at both graduate students and researchers—an introduction to many important topics in modern algebra within a concrete setting for the former, an exploration of a fascinating subfield of algebraic geometry for the latter.

The Invariant Theory of Matrices

The Invariant Theory of Matrices PDF Author: Corrado De Concini
Publisher: American Mathematical Soc.
ISBN: 147044187X
Category : Mathematics
Languages : en
Pages : 162

Get Book Here

Book Description
This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving (1) the first fundamental theorem that describes a set of generators in the ring of invariants, and (2) the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case requires the development of a collection of tools. These tools and their application to the study of invariants are exlained in an elementary, self-contained way in the book.