Introduction to Group Theory with Applications

Introduction to Group Theory with Applications PDF Author: Gerald Burns
Publisher: Academic Press
ISBN: 1483191494
Category : Mathematics
Languages : en
Pages : 446

Get Book Here

Book Description
Introduction to Group Theory with Applications covers the basic principles, concepts, mathematical proofs, and applications of group theory. This book is divided into 13 chapters and begins with discussions of the elementary topics related to the subject, including symmetry operations and group concepts. The succeeding chapters deal with the properties of matrix representations of finite groups, the vibrations of molecular and crystals, vibrational wave function, selection rules, and molecular approximations. These topics are followed by reviews of the basic of quantum mechanics, crystal field theory, atomic physics, hybrid functions, and molecular orbital theory. The last chapters describe the symmetry of crystal lattices, the band theory of solids, and the full rotation group. This book will be of value to undergraduate mathematics and physics students.

Introduction to Group Theory with Applications

Introduction to Group Theory with Applications PDF Author: Gerald Burns
Publisher: Academic Press
ISBN: 1483191494
Category : Mathematics
Languages : en
Pages : 446

Get Book Here

Book Description
Introduction to Group Theory with Applications covers the basic principles, concepts, mathematical proofs, and applications of group theory. This book is divided into 13 chapters and begins with discussions of the elementary topics related to the subject, including symmetry operations and group concepts. The succeeding chapters deal with the properties of matrix representations of finite groups, the vibrations of molecular and crystals, vibrational wave function, selection rules, and molecular approximations. These topics are followed by reviews of the basic of quantum mechanics, crystal field theory, atomic physics, hybrid functions, and molecular orbital theory. The last chapters describe the symmetry of crystal lattices, the band theory of solids, and the full rotation group. This book will be of value to undergraduate mathematics and physics students.

Visual Group Theory

Visual Group Theory PDF Author: Nathan Carter
Publisher: American Mathematical Soc.
ISBN: 1470464330
Category : Education
Languages : en
Pages : 295

Get Book Here

Book Description
Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2012! Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts, but its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory.

An Introduction to Algebraic Topology

An Introduction to Algebraic Topology PDF Author: Joseph J. Rotman
Publisher: Springer Science & Business Media
ISBN: 1461245761
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
A clear exposition, with exercises, of the basic ideas of algebraic topology. Suitable for a two-semester course at the beginning graduate level, it assumes a knowledge of point set topology and basic algebra. Although categories and functors are introduced early in the text, excessive generality is avoided, and the author explains the geometric or analytic origins of abstract concepts as they are introduced.

Symmetry

Symmetry PDF Author: R. McWeeny
Publisher: Elsevier
ISBN: 1483226247
Category : Mathematics
Languages : en
Pages : 263

Get Book Here

Book Description
Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.

Groups

Groups PDF Author: Antonio Machì
Publisher: Springer Science & Business Media
ISBN: 8847024218
Category : Mathematics
Languages : en
Pages : 385

Get Book Here

Book Description
Groups are a means of classification, via the group action on a set, but also the object of a classification. How many groups of a given type are there, and how can they be described? Hölder’s program for attacking this problem in the case of finite groups is a sort of leitmotiv throughout the text. Infinite groups are also considered, with particular attention to logical and decision problems. Abelian, nilpotent and solvable groups are studied both in the finite and infinite case. Permutation groups and are treated in detail; their relationship with Galois theory is often taken into account. The last two chapters deal with the representation theory of finite group and the cohomology theory of groups; the latter with special emphasis on the extension problem. The sections are followed by exercises; hints to the solution are given, and for most of them a complete solution is provided.

A Course on Group Theory

A Course on Group Theory PDF Author: John S. Rose
Publisher: Courier Corporation
ISBN: 0486170667
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
Text for advanced courses in group theory focuses on finite groups, with emphasis on group actions. Explores normal and arithmetical structures of groups as well as applications. 679 exercises. 1978 edition.

An Introduction to the Theory of Groups

An Introduction to the Theory of Groups PDF Author: Paul Alexandroff
Publisher: Courier Corporation
ISBN: 0486275973
Category : Mathematics
Languages : en
Pages : 130

Get Book Here

Book Description
This introductory exposition of group theory by an eminent Russian mathematician is particularly suited to undergraduates. Includes a wealth of simple examples, primarily geometrical, and end-of-chapter exercises. 1959 edition.

Geometric Group Theory

Geometric Group Theory PDF Author: Clara Löh
Publisher: Springer
ISBN: 3319722549
Category : Mathematics
Languages : en
Pages : 390

Get Book Here

Book Description
Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.

An Introduction to Tensors and Group Theory for Physicists

An Introduction to Tensors and Group Theory for Physicists PDF Author: Nadir Jeevanjee
Publisher: Birkhäuser
ISBN: 3319147943
Category : Science
Languages : en
Pages : 317

Get Book Here

Book Description
The second edition of this highly praised textbook provides an introduction to tensors, group theory, and their applications in classical and quantum physics. Both intuitive and rigorous, it aims to demystify tensors by giving the slightly more abstract but conceptually much clearer definition found in the math literature, and then connects this formulation to the component formalism of physics calculations. New pedagogical features, such as new illustrations, tables, and boxed sections, as well as additional “invitation” sections that provide accessible introductions to new material, offer increased visual engagement, clarity, and motivation for students. Part I begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to physics through the use of tensor products. Part II introduces group theory, including abstract groups and Lie groups and their associated Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Examples and exercises are provided in each chapter for good practice in applying the presented material and techniques. Prerequisites for this text include the standard lower-division mathematics and physics courses, though extensive references are provided for the motivated student who has not yet had these. Advanced undergraduate and beginning graduate students in physics and applied mathematics will find this textbook to be a clear, concise, and engaging introduction to tensors and groups. Reviews of the First Edition “[P]hysicist Nadir Jeevanjee has produced a masterly book that will help other physicists understand those subjects [tensors and groups] as mathematicians understand them... From the first pages, Jeevanjee shows amazing skill in finding fresh, compelling words to bring forward the insight that animates the modern mathematical view...[W]ith compelling force and clarity, he provides many carefully worked-out examples and well-chosen specific problems... Jeevanjee’s clear and forceful writing presents familiar cases with a freshness that will draw in and reassure even a fearful student. [This] is a masterpiece of exposition and explanation that would win credit for even a seasoned author.” —Physics Today "Jeevanjee’s [text] is a valuable piece of work on several counts, including its express pedagogical service rendered to fledgling physicists and the fact that it does indeed give pure mathematicians a way to come to terms with what physicists are saying with the same words we use, but with an ostensibly different meaning. The book is very easy to read, very user-friendly, full of examples...and exercises, and will do the job the author wants it to do with style.” —MAA Reviews

Introductory Group Theory

Introductory Group Theory PDF Author: John R. Ferraro
Publisher: Springer Science & Business Media
ISBN: 1461548217
Category : Mathematics
Languages : en
Pages : 235

Get Book Here

Book Description
This volume is a consequence of a series of seminars presented by the authors at the Infrared Spectroscopy Institute, Canisius College, Buffalo, New York, over the last nine years. Many participants on an intermediate level lacked a sufficient background in mathematics and quantum mechan ics, and it became evident that a non mathematical or nearly nonmathe matical approach would be necessary. The lectures were designed to fill this need and proved very successful. As a result of the interest that was developed in this approach, it was decided to write this book. The text is intended for scientists and students with only limited theore tical background in spectroscopy, but who are sincerely interested in the interpretation of molecular spectra. The book develops the detailed selection rules for fundamentals, combinations, and overtones for molecules in several point groups. Detailed procedures used in carrying out the normal coordinate treatment for several molecules are also presented. Numerous examples from the literature illustrate the use of group theory in the in terpretation of molecular spectra and in the determination of molecular structure.