Introduction to Voice Computing in Python

Introduction to Voice Computing in Python PDF Author: Jim Schwoebel
Publisher: Createspace Independent Publishing Platform
ISBN: 9781725656659
Category :
Languages : en
Pages : 408

Get Book Here

Book Description
It's an exciting time to be a developer in the voice computing space: 1 in 4 searches on Google are now voice-enabled, Amazon Alexa just passed 10,000 skills, and 100 million calls are completed on WhatsApp daily. But where do you go to start learning how to code in this field? Whether you are a veteran developer or just starting out, this book guides you through the process of building voice-based applications in Python. Understand how to read/write, record, clean, encrypt, playback, transcode, transcribe, compress, publish, featurize, model, and visualize voice files Build your own voice computer and voice assistant from scratch Design cutting-edge microservice server architectures on top of Docker and Kubernetes Get access to 200+ starter scripts in a GitHub repository Become involved in the larger open source voice community

International Conference on Innovative Computing and Communications

International Conference on Innovative Computing and Communications PDF Author: Deepak Gupta
Publisher: Springer Nature
ISBN: 9811551138
Category : Technology & Engineering
Languages : en
Pages : 1152

Get Book Here

Book Description
This book includes high-quality research papers presented at the Third International Conference on Innovative Computing and Communication (ICICC 2020), which is held at the Shaheed Sukhdev College of Business Studies, University of Delhi, Delhi, India, on 21–23 February, 2020. Introducing the innovative works of scientists, professors, research scholars, students and industrial experts in the field of computing and communication, the book promotes the transformation of fundamental research into institutional and industrialized research and the conversion of applied exploration into real-time applications.

Signal Processing in Medicine and Biology

Signal Processing in Medicine and Biology PDF Author: Iyad Obeid
Publisher: Springer Nature
ISBN: 3030368440
Category : Technology & Engineering
Languages : en
Pages : 287

Get Book Here

Book Description
This book covers emerging trends in signal processing research and biomedical engineering, exploring the ways in which signal processing plays a vital role in applications ranging from medical electronics to data mining of electronic medical records. Topics covered include statistical modeling of electroencephalograph data for predicting or detecting seizure, stroke, or Parkinson’s; machine learning methods and their application to biomedical problems, which is often poorly understood, even within the scientific community; signal analysis; medical imaging; and machine learning, data mining, and classification. The book features tutorials and examples of successful applications that will appeal to a wide range of professionals and researchers interested in applications of signal processing, medicine, and biology.

Natural Language Processing with Python

Natural Language Processing with Python PDF Author: Steven Bird
Publisher: "O'Reilly Media, Inc."
ISBN: 0596555717
Category : Computers
Languages : en
Pages : 506

Get Book Here

Book Description
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Python Machine Learning Cookbook

Python Machine Learning Cookbook PDF Author: Prateek Joshi
Publisher: Packt Publishing Ltd
ISBN: 1786467682
Category : Computers
Languages : en
Pages : 304

Get Book Here

Book Description
100 recipes that teach you how to perform various machine learning tasks in the real world About This Book Understand which algorithms to use in a given context with the help of this exciting recipe-based guide Learn about perceptrons and see how they are used to build neural networks Stuck while making sense of images, text, speech, and real estate? This guide will come to your rescue, showing you how to perform machine learning for each one of these using various techniques Who This Book Is For This book is for Python programmers who are looking to use machine-learning algorithms to create real-world applications. This book is friendly to Python beginners, but familiarity with Python programming would certainly be useful to play around with the code. What You Will Learn Explore classification algorithms and apply them to the income bracket estimation problem Use predictive modeling and apply it to real-world problems Understand how to perform market segmentation using unsupervised learning Explore data visualization techniques to interact with your data in diverse ways Find out how to build a recommendation engine Understand how to interact with text data and build models to analyze it Work with speech data and recognize spoken words using Hidden Markov Models Analyze stock market data using Conditional Random Fields Work with image data and build systems for image recognition and biometric face recognition Grasp how to use deep neural networks to build an optical character recognition system In Detail Machine learning is becoming increasingly pervasive in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. With this book, you will learn how to perform various machine learning tasks in different environments. We'll start by exploring a range of real-life scenarios where machine learning can be used, and look at various building blocks. Throughout the book, you'll use a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms. You'll discover how to deal with various types of data and explore the differences between machine learning paradigms such as supervised and unsupervised learning. We also cover a range of regression techniques, classification algorithms, predictive modeling, data visualization techniques, recommendation engines, and more with the help of real-world examples. Style and approach You will explore various real-life scenarios in this book where machine learning can be used, and learn about different building blocks of machine learning using independent recipes in the book.

Introduction to Data Science

Introduction to Data Science PDF Author: Laura Igual
Publisher: Springer
ISBN: 3319500171
Category : Computers
Languages : en
Pages : 227

Get Book Here

Book Description
This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.

On Java 8

On Java 8 PDF Author: Bruce Eckel
Publisher: MindView LLC
ISBN: 0981872522
Category : Computers
Languages : en
Pages : 1820

Get Book Here

Book Description


Computing and Machine Learning

Computing and Machine Learning PDF Author: Jagdish Chand Bansal
Publisher: Springer Nature
ISBN: 9819765889
Category :
Languages : en
Pages : 510

Get Book Here

Book Description


Innovative Computing and Communications

Innovative Computing and Communications PDF Author: Aboul Ella Hassanien
Publisher: Springer Nature
ISBN: 9819735912
Category :
Languages : en
Pages : 662

Get Book Here

Book Description


Deep Learning for NLP and Speech Recognition

Deep Learning for NLP and Speech Recognition PDF Author: Uday Kamath
Publisher: Springer
ISBN: 3030145964
Category : Computers
Languages : en
Pages : 640

Get Book Here

Book Description
This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience. Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech Introduction The first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning Basics The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and Speech The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies.