Author: R. Byron Bird
Publisher: Wiley Global Education
ISBN: 1118953711
Category : Technology & Engineering
Languages : en
Pages : 786
Book Description
Introductory Transport Phenomena by R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot, and Daniel Klingenberg is a new introductory textbook based on the classic Bird, Stewart, Lightfoot text, Transport Phenomena. The authors’ goal in writing this book reflects topics covered in an undergraduate course. Some of the rigorous topics suitable for the advanced students have been retained. The text covers topics such as: the transport of momentum; the transport of energy and the transport of chemical species. The organization of the material is similar to Bird/Stewart/Lightfoot, but presentation has been thoughtfully revised specifically for undergraduate students encountering these concepts for the first time. Devoting more space to mathematical derivations and providing fuller explanations of mathematical developments—including a section of the appendix devoted to mathematical topics—allows students to comprehend transport phenomena concepts at an undergraduate level.
Introductory Transport Phenomena
Author: R. Byron Bird
Publisher: Wiley Global Education
ISBN: 1118953711
Category : Technology & Engineering
Languages : en
Pages : 786
Book Description
Introductory Transport Phenomena by R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot, and Daniel Klingenberg is a new introductory textbook based on the classic Bird, Stewart, Lightfoot text, Transport Phenomena. The authors’ goal in writing this book reflects topics covered in an undergraduate course. Some of the rigorous topics suitable for the advanced students have been retained. The text covers topics such as: the transport of momentum; the transport of energy and the transport of chemical species. The organization of the material is similar to Bird/Stewart/Lightfoot, but presentation has been thoughtfully revised specifically for undergraduate students encountering these concepts for the first time. Devoting more space to mathematical derivations and providing fuller explanations of mathematical developments—including a section of the appendix devoted to mathematical topics—allows students to comprehend transport phenomena concepts at an undergraduate level.
Publisher: Wiley Global Education
ISBN: 1118953711
Category : Technology & Engineering
Languages : en
Pages : 786
Book Description
Introductory Transport Phenomena by R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot, and Daniel Klingenberg is a new introductory textbook based on the classic Bird, Stewart, Lightfoot text, Transport Phenomena. The authors’ goal in writing this book reflects topics covered in an undergraduate course. Some of the rigorous topics suitable for the advanced students have been retained. The text covers topics such as: the transport of momentum; the transport of energy and the transport of chemical species. The organization of the material is similar to Bird/Stewart/Lightfoot, but presentation has been thoughtfully revised specifically for undergraduate students encountering these concepts for the first time. Devoting more space to mathematical derivations and providing fuller explanations of mathematical developments—including a section of the appendix devoted to mathematical topics—allows students to comprehend transport phenomena concepts at an undergraduate level.
An Introduction to Transport Phenomena in Materials Engineering
Author: David R. Gaskell
Publisher: Prentice Hall
ISBN:
Category : Science
Languages : en
Pages : 664
Book Description
This introduction to transport phenomena in materials engineering balances an explanation of the fundamentals governing fluid flow and the transport of heat and mass with their common applications to specific systems in materials engineering. It introduces the influences of properties and geometry on fluid flow using familiar fluids such as air and water. Covers topics such as engineering units and pressure in static fluids; momentum transport and laminar flow of Newtonian fluids; equations of continuity and conservation of momentum and fluid flow past submerged objects; turbulent flow; mechanical energy balance and its application to fluid flow; transport of heat by conduction; transport of heat by convection; transient heat flow; heat transport by thermal radiation; mass transport in the solid state by diffusion; mass transport in fluids. Includes extensive appendices.
Publisher: Prentice Hall
ISBN:
Category : Science
Languages : en
Pages : 664
Book Description
This introduction to transport phenomena in materials engineering balances an explanation of the fundamentals governing fluid flow and the transport of heat and mass with their common applications to specific systems in materials engineering. It introduces the influences of properties and geometry on fluid flow using familiar fluids such as air and water. Covers topics such as engineering units and pressure in static fluids; momentum transport and laminar flow of Newtonian fluids; equations of continuity and conservation of momentum and fluid flow past submerged objects; turbulent flow; mechanical energy balance and its application to fluid flow; transport of heat by conduction; transport of heat by convection; transient heat flow; heat transport by thermal radiation; mass transport in the solid state by diffusion; mass transport in fluids. Includes extensive appendices.
An Introduction to Fluid Mechanics and Transport Phenomena
Author: G. Hauke
Publisher: Springer Science & Business Media
ISBN: 1402085370
Category : Technology & Engineering
Languages : en
Pages : 301
Book Description
This book presents the foundations of fluid mechanics and transport phenomena in a concise way. It is suitable as an introduction to the subject as it contains many examples, proposed problems and a chapter for self-evaluation.
Publisher: Springer Science & Business Media
ISBN: 1402085370
Category : Technology & Engineering
Languages : en
Pages : 301
Book Description
This book presents the foundations of fluid mechanics and transport phenomena in a concise way. It is suitable as an introduction to the subject as it contains many examples, proposed problems and a chapter for self-evaluation.
Introduction to Transport Phenomena Modeling
Author: Gianpaolo Ruocco
Publisher: Springer
ISBN: 3319668226
Category : Science
Languages : en
Pages : 297
Book Description
This textbook offers an introduction to multiple, interdependent transport phenomena as they occur in various fields of physics and technology like transport of momentum, heat, and matter. These phenomena are found in a number of combined processes in the fields of chemical, food, biomedical, and environmental sciences. The book puts a special emphasis on numerical modeling of both purely diffusive mechanisms and macroscopic transport such as fluid dynamics, heat and mass convection. To favor the applicability of the various concepts, they are presented with a simplicity of exposure, and synthesis has been preferred with respect to completeness. The book includes more than 130 graphs and figures, to facilitate the understanding of the various topics. It also presents many modeling examples throughout the text, to control that the learned material is properly understood. There are some typos in the text. You can see the corrections here: http://www.springer.com/cda/content/document/cda_downloaddocument/ErrataCorrige_v0.pdf?SGWID=0-0-45-1679320-p181107156
Publisher: Springer
ISBN: 3319668226
Category : Science
Languages : en
Pages : 297
Book Description
This textbook offers an introduction to multiple, interdependent transport phenomena as they occur in various fields of physics and technology like transport of momentum, heat, and matter. These phenomena are found in a number of combined processes in the fields of chemical, food, biomedical, and environmental sciences. The book puts a special emphasis on numerical modeling of both purely diffusive mechanisms and macroscopic transport such as fluid dynamics, heat and mass convection. To favor the applicability of the various concepts, they are presented with a simplicity of exposure, and synthesis has been preferred with respect to completeness. The book includes more than 130 graphs and figures, to facilitate the understanding of the various topics. It also presents many modeling examples throughout the text, to control that the learned material is properly understood. There are some typos in the text. You can see the corrections here: http://www.springer.com/cda/content/document/cda_downloaddocument/ErrataCorrige_v0.pdf?SGWID=0-0-45-1679320-p181107156
Transport Phenomena
Author: Larry A. Glasgow
Publisher: John Wiley & Sons
ISBN: 1118031776
Category : Technology & Engineering
Languages : en
Pages : 519
Book Description
Enables readers to apply transport phenomena principles to solve advanced problems in all areas of engineering and science This book helps readers elevate their understanding of, and their ability to apply, transport phenomena by introducing a broad range of advanced topics as well as analytical and numerical solution techniques. Readers gain the ability to solve complex problems generally not addressed in undergraduate-level courses, including nonlinear, multidimensional transport, and transient molecular and convective transport scenarios. Avoiding rote memorization, the author emphasizes a dual approach to learning in which physical understanding and problem-solving capability are developed simultaneously. Moreover, the author builds both readers' interest and knowledge by: Demonstrating that transport phenomena are pervasive, affecting every aspect of life Offering historical perspectives to enhance readers' understanding of current theory and methods Providing numerous examples drawn from a broad range of fields in the physical and life sciences and engineering Contextualizing problems in scenarios so that their rationale and significance are clear This text generally avoids the use of commercial software for problem solutions, helping readers cultivate a deeper understanding of how solutions are developed. References throughout the text promote further study and encourage the student to contemplate additional topics in transport phenomena. Transport Phenomena is written for advanced undergraduates and graduate students in chemical and mechanical engineering. Upon mastering the principles and techniques presented in this text, all readers will be better able to critically evaluate a broad range of physical phenomena, processes, and systems across many disciplines.
Publisher: John Wiley & Sons
ISBN: 1118031776
Category : Technology & Engineering
Languages : en
Pages : 519
Book Description
Enables readers to apply transport phenomena principles to solve advanced problems in all areas of engineering and science This book helps readers elevate their understanding of, and their ability to apply, transport phenomena by introducing a broad range of advanced topics as well as analytical and numerical solution techniques. Readers gain the ability to solve complex problems generally not addressed in undergraduate-level courses, including nonlinear, multidimensional transport, and transient molecular and convective transport scenarios. Avoiding rote memorization, the author emphasizes a dual approach to learning in which physical understanding and problem-solving capability are developed simultaneously. Moreover, the author builds both readers' interest and knowledge by: Demonstrating that transport phenomena are pervasive, affecting every aspect of life Offering historical perspectives to enhance readers' understanding of current theory and methods Providing numerous examples drawn from a broad range of fields in the physical and life sciences and engineering Contextualizing problems in scenarios so that their rationale and significance are clear This text generally avoids the use of commercial software for problem solutions, helping readers cultivate a deeper understanding of how solutions are developed. References throughout the text promote further study and encourage the student to contemplate additional topics in transport phenomena. Transport Phenomena is written for advanced undergraduates and graduate students in chemical and mechanical engineering. Upon mastering the principles and techniques presented in this text, all readers will be better able to critically evaluate a broad range of physical phenomena, processes, and systems across many disciplines.
INTRODUCTION TO TRANSPORT PHENOMENA
Author: BODH RAJ
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120345185
Category : Technology & Engineering
Languages : en
Pages : 224
Book Description
This introductory text discusses the essential concepts of three funda-mental transport processes, namely, momentum transfer, heat transfer, and mass transfer. Apart from chemical engineering, transport processes play an increasingly important role today in the fields of biotechnology, nanotechnology and microelectronics. The book covers the basic laws of momentum, heat and mass transfer. All the three transport processes are explained using two approaches—first by flux expressions and second by shell balances. These concepts are applied to formulate the physical problems of momentum, heat and mass transfer. Simple physical processes from the chemical engineering field are selected to understand the mechanism of these transfer operations. Though these problems are solved for unidirectional flow and laminar flow conditions only, turbulent flow conditions are also discussed. Boundary conditions and Prandtl mixing models for turbulent flow conditions are explained as well. The unsteady-state conditions for momentum, heat and mass transfer have also been highlighted with the help of simple cases. Finally, the approach of anology has also been adopted in the book to understand these three molecular transport processes. Different analogies such as Reynolds, Prandtl, von Kármán and Chilton–Colburn are discussed in detail. This book is designed for the undergraduate students of chemical engineering and covers the syllabi on Transport Phenomena as currently prescribed in most institutes and universities.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120345185
Category : Technology & Engineering
Languages : en
Pages : 224
Book Description
This introductory text discusses the essential concepts of three funda-mental transport processes, namely, momentum transfer, heat transfer, and mass transfer. Apart from chemical engineering, transport processes play an increasingly important role today in the fields of biotechnology, nanotechnology and microelectronics. The book covers the basic laws of momentum, heat and mass transfer. All the three transport processes are explained using two approaches—first by flux expressions and second by shell balances. These concepts are applied to formulate the physical problems of momentum, heat and mass transfer. Simple physical processes from the chemical engineering field are selected to understand the mechanism of these transfer operations. Though these problems are solved for unidirectional flow and laminar flow conditions only, turbulent flow conditions are also discussed. Boundary conditions and Prandtl mixing models for turbulent flow conditions are explained as well. The unsteady-state conditions for momentum, heat and mass transfer have also been highlighted with the help of simple cases. Finally, the approach of anology has also been adopted in the book to understand these three molecular transport processes. Different analogies such as Reynolds, Prandtl, von Kármán and Chilton–Colburn are discussed in detail. This book is designed for the undergraduate students of chemical engineering and covers the syllabi on Transport Phenomena as currently prescribed in most institutes and universities.
Introduction to Transport Phenomena
Author: William J. Thomson
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 536
Book Description
"Professor William J. Thomson emphasizes the formulation of differential equations to describe physical problems, helping readers understand what they are doing - and why. The solutions are either simple (separable, linear second order) or derivable with a differential equation solver."--BOOK JACKET.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 536
Book Description
"Professor William J. Thomson emphasizes the formulation of differential equations to describe physical problems, helping readers understand what they are doing - and why. The solutions are either simple (separable, linear second order) or derivable with a differential equation solver."--BOOK JACKET.
Introduction to Modeling of Transport Phenomena in Porous Media
Author: Jacob Bear
Publisher: Springer Science & Business Media
ISBN: 9400919263
Category : Science
Languages : en
Pages : 575
Book Description
The main purpose of this book is to provide the theoretical background to engineers and scientists engaged in modeling transport phenomena in porous media, in connection with various engineering projects, and to serve as a text for senior and graduate courses on transport phenomena in porous media. Such courses are taught in various disciplines, e. g. , civil engineering, chemical engineering, reservoir engineering, agricultural engineering and soil science. In these disciplines, problems are encountered in which various extensive quantities, e. g. , mass and heat, are transported through a porous material domain. Often the porous material contains several fluid phases, and the various extensive quantities are transported simultaneously throughout the multiphase system. In all these disciplines, management decisions related to a system's development and its operation have to be made. To do so, the 'manager', or the planner, needs a tool that will enable him to forecast the response of the system to the implementation of proposed management schemes. This forecast takes the form of spatial and temporal distributions of variables that describe the future state of the considered system. Pressure, stress, strain, density, velocity, solute concentration, temperature, etc. , for each phase in the system, and sometime for a component of a phase, may serve as examples of state variables. The tool that enables the required predictions is the model. A model may be defined as a simplified version of the real (porous medium) system that approximately simulates the excitation-response relations of the latter.
Publisher: Springer Science & Business Media
ISBN: 9400919263
Category : Science
Languages : en
Pages : 575
Book Description
The main purpose of this book is to provide the theoretical background to engineers and scientists engaged in modeling transport phenomena in porous media, in connection with various engineering projects, and to serve as a text for senior and graduate courses on transport phenomena in porous media. Such courses are taught in various disciplines, e. g. , civil engineering, chemical engineering, reservoir engineering, agricultural engineering and soil science. In these disciplines, problems are encountered in which various extensive quantities, e. g. , mass and heat, are transported through a porous material domain. Often the porous material contains several fluid phases, and the various extensive quantities are transported simultaneously throughout the multiphase system. In all these disciplines, management decisions related to a system's development and its operation have to be made. To do so, the 'manager', or the planner, needs a tool that will enable him to forecast the response of the system to the implementation of proposed management schemes. This forecast takes the form of spatial and temporal distributions of variables that describe the future state of the considered system. Pressure, stress, strain, density, velocity, solute concentration, temperature, etc. , for each phase in the system, and sometime for a component of a phase, may serve as examples of state variables. The tool that enables the required predictions is the model. A model may be defined as a simplified version of the real (porous medium) system that approximately simulates the excitation-response relations of the latter.
Transport Phenomena
Author: Robert Byron Bird
Publisher:
ISBN:
Category : Chemical engineering
Languages : en
Pages : 780
Book Description
Publisher:
ISBN:
Category : Chemical engineering
Languages : en
Pages : 780
Book Description
Advanced Transport Phenomena
Author: L. Gary Leal
Publisher: Cambridge University Press
ISBN: 1139462067
Category : Technology & Engineering
Languages : en
Pages : 7
Book Description
Advanced Transport Phenomena is ideal as a graduate textbook. It contains a detailed discussion of modern analytic methods for the solution of fluid mechanics and heat and mass transfer problems, focusing on approximations based on scaling and asymptotic methods, beginning with the derivation of basic equations and boundary conditions and concluding with linear stability theory. Also covered are unidirectional flows, lubrication and thin-film theory, creeping flows, boundary layer theory, and convective heat and mass transport at high and low Reynolds numbers. The emphasis is on basic physics, scaling and nondimensionalization, and approximations that can be used to obtain solutions that are due either to geometric simplifications, or large or small values of dimensionless parameters. The author emphasizes setting up problems and extracting as much information as possible short of obtaining detailed solutions of differential equations. The book also focuses on the solutions of representative problems. This reflects the book's goal of teaching readers to think about the solution of transport problems.
Publisher: Cambridge University Press
ISBN: 1139462067
Category : Technology & Engineering
Languages : en
Pages : 7
Book Description
Advanced Transport Phenomena is ideal as a graduate textbook. It contains a detailed discussion of modern analytic methods for the solution of fluid mechanics and heat and mass transfer problems, focusing on approximations based on scaling and asymptotic methods, beginning with the derivation of basic equations and boundary conditions and concluding with linear stability theory. Also covered are unidirectional flows, lubrication and thin-film theory, creeping flows, boundary layer theory, and convective heat and mass transport at high and low Reynolds numbers. The emphasis is on basic physics, scaling and nondimensionalization, and approximations that can be used to obtain solutions that are due either to geometric simplifications, or large or small values of dimensionless parameters. The author emphasizes setting up problems and extracting as much information as possible short of obtaining detailed solutions of differential equations. The book also focuses on the solutions of representative problems. This reflects the book's goal of teaching readers to think about the solution of transport problems.