Introduction to the Theory of Determinants and Matrices

Introduction to the Theory of Determinants and Matrices PDF Author: Eduard Tankard Browne
Publisher:
ISBN:
Category : Determinants
Languages : en
Pages :

Get Book Here

Book Description

Introduction to the Theory of Determinants and Matrices

Introduction to the Theory of Determinants and Matrices PDF Author: Eduard Tankard Browne
Publisher:
ISBN:
Category : Determinants
Languages : en
Pages :

Get Book Here

Book Description


Introduction to Modern Algebra and Matrix Theory

Introduction to Modern Algebra and Matrix Theory PDF Author: Otto Schreier
Publisher: Courier Corporation
ISBN: 0486482200
Category : Mathematics
Languages : en
Pages : 402

Get Book Here

Book Description
"This unique text provides students with a basic course in both calculus and analytic geometry. It promotes an intuitive approach to calculus and emphasizes algebraic concepts. Minimal prerequisites. Numerous exercises. 1951 edition"--

Determinants and Matrices

Determinants and Matrices PDF Author: A. C. Aitken
Publisher: Read Books Ltd
ISBN: 1473347106
Category : Mathematics
Languages : en
Pages : 171

Get Book Here

Book Description
This book contains a detailed guide to determinants and matrices in algebra. It offers an in-depth look into this area of mathematics, and it is highly recommended for those looking for an introduction to the subject. "Determinants and Matrices" is not to be missed by collectors of vintage mathematical literature. Contents include: "Linear Equations and Transformations", "The Notation of Matrices", "Matrices, Row and Column Vectors, Sealers", "The Operations of Matrix Algebra", "Matrix Pre- and Postmultiplication", "Product of Three or More Matrices", "Transposition of Rows and Columns", "Transpose of a Product: Reversal Rule", etc. Many vintage books such as this are becoming increasingly scarce and expensive. It is with this in mind that we are republishing this volume now in a modern, high-quality edition complete with the original text and artwork.

Algebra: A Very Short Introduction

Algebra: A Very Short Introduction PDF Author: Peter M. Higgins
Publisher: OUP Oxford
ISBN: 0191047465
Category : Mathematics
Languages : en
Pages : 161

Get Book Here

Book Description
Algebra marked the beginning of modern mathematics, moving it beyond arithmetic, which involves calculations featuring given numbers, to problems where some quantities are unknown. Now, it stands as a pillar of mathematics, underpinning the quantitative sciences, both social and physical. This Very Short Introduction explains algebra from scratch. Over the course of ten logical chapters, Higgins offers a step by step approach for readers keen on developing their understanding of algebra. Using theory and example, he renews the reader's aquaintance with school mathematics, before taking them progressively further and deeper into the subject. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.

Matrix Theory

Matrix Theory PDF Author: Joel N. Franklin
Publisher: Courier Corporation
ISBN: 0486136388
Category : Mathematics
Languages : en
Pages : 319

Get Book Here

Book Description
Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.

Vector Spaces and Matrices

Vector Spaces and Matrices PDF Author: Robert M. Thrall
Publisher: Courier Corporation
ISBN: 0486321053
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
Students receive the benefits of axiom-based mathematical reasoning as well as a grasp of concrete formulations. Suitable as a primary or supplementary text for college-level courses in linear algebra. 1957 edition.

Linear Algebra and Matrix Theory

Linear Algebra and Matrix Theory PDF Author: Robert R. Stoll
Publisher: Courier Corporation
ISBN: 0486623181
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.

The Theory of Matrices

The Theory of Matrices PDF Author: Feliks Ruvimovich Gantmakher
Publisher:
ISBN:
Category : Matrices
Languages : en
Pages : 296

Get Book Here

Book Description


An Introduction to Random Matrices

An Introduction to Random Matrices PDF Author: Greg W. Anderson
Publisher: Cambridge University Press
ISBN: 0521194520
Category : Mathematics
Languages : en
Pages : 507

Get Book Here

Book Description
A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.

Linear Algebra: Theory and Applications

Linear Algebra: Theory and Applications PDF Author: Kenneth Kuttler
Publisher: The Saylor Foundation
ISBN:
Category : Mathematics
Languages : en
Pages : 503

Get Book Here

Book Description
This is a book on linear algebra and matrix theory. While it is self contained, it will work best for those who have already had some exposure to linear algebra. It is also assumed that the reader has had calculus. Some optional topics require more analysis than this, however. I think that the subject of linear algebra is likely the most significant topic discussed in undergraduate mathematics courses. Part of the reason for this is its usefulness in unifying so many different topics. Linear algebra is essential in analysis, applied math, and even in theoretical mathematics. This is the point of view of this book, more than a presentation of linear algebra for its own sake. This is why there are numerous applications, some fairly unusual.