Introduction to Statistical Pattern Recognition

Introduction to Statistical Pattern Recognition PDF Author: Keinosuke Fukunaga
Publisher: Elsevier
ISBN: 0080478654
Category : Computers
Languages : en
Pages : 606

Get Book Here

Book Description
This completely revised second edition presents an introduction to statistical pattern recognition. Pattern recognition in general covers a wide range of problems: it is applied to engineering problems, such as character readers and wave form analysis as well as to brain modeling in biology and psychology. Statistical decision and estimation, which are the main subjects of this book, are regarded as fundamental to the study of pattern recognition. This book is appropriate as a text for introductory courses in pattern recognition and as a reference book for workers in the field. Each chapter contains computer projects as well as exercises.

Introduction to Statistical Pattern Recognition

Introduction to Statistical Pattern Recognition PDF Author: Keinosuke Fukunaga
Publisher: Elsevier
ISBN: 0080478654
Category : Computers
Languages : en
Pages : 606

Get Book Here

Book Description
This completely revised second edition presents an introduction to statistical pattern recognition. Pattern recognition in general covers a wide range of problems: it is applied to engineering problems, such as character readers and wave form analysis as well as to brain modeling in biology and psychology. Statistical decision and estimation, which are the main subjects of this book, are regarded as fundamental to the study of pattern recognition. This book is appropriate as a text for introductory courses in pattern recognition and as a reference book for workers in the field. Each chapter contains computer projects as well as exercises.

Statistical Pattern Recognition

Statistical Pattern Recognition PDF Author: Andrew R. Webb
Publisher: John Wiley & Sons
ISBN: 0470854782
Category : Mathematics
Languages : en
Pages : 516

Get Book Here

Book Description
Statistical pattern recognition is a very active area of study andresearch, which has seen many advances in recent years. New andemerging applications - such as data mining, web searching,multimedia data retrieval, face recognition, and cursivehandwriting recognition - require robust and efficient patternrecognition techniques. Statistical decision making and estimationare regarded as fundamental to the study of pattern recognition. Statistical Pattern Recognition, Second Edition has been fullyupdated with new methods, applications and references. It providesa comprehensive introduction to this vibrant area - with materialdrawn from engineering, statistics, computer science and the socialsciences - and covers many application areas, such as databasedesign, artificial neural networks, and decision supportsystems. * Provides a self-contained introduction to statistical patternrecognition. * Each technique described is illustrated by real examples. * Covers Bayesian methods, neural networks, support vectormachines, and unsupervised classification. * Each section concludes with a description of the applicationsthat have been addressed and with further developments of thetheory. * Includes background material on dissimilarity, parameterestimation, data, linear algebra and probability. * Features a variety of exercises, from 'open-book' questions tomore lengthy projects. The book is aimed primarily at senior undergraduate and graduatestudents studying statistical pattern recognition, patternprocessing, neural networks, and data mining, in both statisticsand engineering departments. It is also an excellent source ofreference for technical professionals working in advancedinformation development environments. For further information on the techniques and applicationsdiscussed in this book please visit ahref="http://www.statistical-pattern-recognition.net/"www.statistical-pattern-recognition.net/a

Discriminant Analysis and Statistical Pattern Recognition

Discriminant Analysis and Statistical Pattern Recognition PDF Author: Geoffrey J. McLachlan
Publisher: John Wiley & Sons
ISBN: 0471725285
Category : Mathematics
Languages : en
Pages : 552

Get Book Here

Book Description
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "For both applied and theoretical statisticians as well as investigators working in the many areas in which relevant use can be made of discriminant techniques, this monograph provides a modern, comprehensive, and systematic account of discriminant analysis, with the focus on the more recent advances in the field." –SciTech Book News ". . . a very useful source of information for any researcher working in discriminant analysis and pattern recognition." –Computational Statistics Discriminant Analysis and Statistical Pattern Recognition provides a systematic account of the subject. While the focus is on practical considerations, both theoretical and practical issues are explored. Among the advances covered are regularized discriminant analysis and bootstrap-based assessment of the performance of a sample-based discriminant rule, and extensions of discriminant analysis motivated by problems in statistical image analysis. The accompanying bibliography contains over 1,200 references.

Introduction to Statistical Machine Learning

Introduction to Statistical Machine Learning PDF Author: Masashi Sugiyama
Publisher: Morgan Kaufmann
ISBN: 0128023503
Category : Mathematics
Languages : en
Pages : 535

Get Book Here

Book Description
Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials. Introduction to Statistical Machine Learning provides a general introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental concepts of statistics and probability that are used in describing machine learning algorithms. Part II and Part III explain the two major approaches of machine learning techniques; generative methods and discriminative methods. While Part III provides an in-depth look at advanced topics that play essential roles in making machine learning algorithms more useful in practice. The accompanying MATLAB/Octave programs provide you with the necessary practical skills needed to accomplish a wide range of data analysis tasks. - Provides the necessary background material to understand machine learning such as statistics, probability, linear algebra, and calculus - Complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning - Includes MATLAB/Octave programs so that readers can test the algorithms numerically and acquire both mathematical and practical skills in a wide range of data analysis tasks - Discusses a wide range of applications in machine learning and statistics and provides examples drawn from image processing, speech processing, natural language processing, robot control, as well as biology, medicine, astronomy, physics, and materials

Introduction to Pattern Recognition

Introduction to Pattern Recognition PDF Author: Menahem Friedman
Publisher: World Scientific
ISBN: 9789810233129
Category : Computers
Languages : en
Pages : 350

Get Book Here

Book Description
This book is an introduction to pattern recognition, meant for undergraduate and graduate students in computer science and related fields in science and technology. Most of the topics are accompanied by detailed algorithms and real world applications. In addition to statistical and structural approaches, novel topics such as fuzzy pattern recognition and pattern recognition via neural networks are also reviewed. Each topic is followed by several examples solved in detail. The only prerequisites for using this book are a one-semester course in discrete mathematics and a knowledge of the basic preliminaries of calculus, linear algebra and probability theory.

Random Graphs for Statistical Pattern Recognition

Random Graphs for Statistical Pattern Recognition PDF Author: David J. Marchette
Publisher: John Wiley & Sons
ISBN: 0471722081
Category : Mathematics
Languages : en
Pages : 261

Get Book Here

Book Description
A timely convergence of two widely used disciplines Random Graphs for Statistical Pattern Recognition is the first book to address the topic of random graphs as it applies to statistical pattern recognition. Both topics are of vital interest to researchers in various mathematical and statistical fields and have never before been treated together in one book. The use of data random graphs in pattern recognition in clustering and classification is discussed, and the applications for both disciplines are enhanced with new tools for the statistical pattern recognition community. New and interesting applications for random graph users are also introduced. This important addition to statistical literature features: Information that previously has been available only through scattered journal articles Practical tools and techniques for a wide range of real-world applications New perspectives on the relationship between pattern recognition and computational geometry Numerous experimental problems to encourage practical applications With its comprehensive coverage of two timely fields, enhanced with many references and real-world examples, Random Graphs for Statistical Pattern Recognition is a valuable resource for industry professionals and students alike.

Ten Lectures on Statistical and Structural Pattern Recognition

Ten Lectures on Statistical and Structural Pattern Recognition PDF Author: M.I. Schlesinger
Publisher: Springer Science & Business Media
ISBN: 9781402006425
Category : Business & Economics
Languages : en
Pages : 556

Get Book Here

Book Description
This monograph explores the close relationship of variouswell-known pattern recognition problems that have so far beenconsidered independent. These relationships became apparent with thediscovery of formal procedures for addressing known problems and theirgeneralisations. The generalised problem formulations were analysedmathematically and unified algorithms were found. The main scientificcontribution of this book is the unification of two main streams inpattern recognition - the statistical one and the structuralone. The material is presented in the form of ten lectures, each ofwhich concludes with a discussion with a student."Audience: " The book is intended for both researchers and studentswho work in knowledge management and organisation, machine learning, statistics, and symbolic and algebraic manipulations. It provides newviews and numerous original results in their field. Written in aneasily accessible style, it introduces the basic building blocks ofpattern recognition, demonstrates the beauty and the pitfalls ofscientific research, and encourages good habits in readingmathematical text.

Pattern Recognition

Pattern Recognition PDF Author: Sergios Theodoridis
Publisher: Elsevier
ISBN: 008051362X
Category : Technology & Engineering
Languages : en
Pages : 705

Get Book Here

Book Description
Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to "learn" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10 years of teaching experience, the text was developed by the authors through use in their own classrooms.*Approaches pattern recognition from the designer's point of view*New edition highlights latest developments in this growing field, including independent components and support vector machines, not available elsewhere*Supplemented by computer examples selected from applications of interest

A Probabilistic Theory of Pattern Recognition

A Probabilistic Theory of Pattern Recognition PDF Author: Luc Devroye
Publisher: Springer Science & Business Media
ISBN: 1461207118
Category : Mathematics
Languages : en
Pages : 631

Get Book Here

Book Description
A self-contained and coherent account of probabilistic techniques, covering: distance measures, kernel rules, nearest neighbour rules, Vapnik-Chervonenkis theory, parametric classification, and feature extraction. Each chapter concludes with problems and exercises to further the readers understanding. Both research workers and graduate students will benefit from this wide-ranging and up-to-date account of a fast- moving field.

Pattern Recognition and Classification

Pattern Recognition and Classification PDF Author: Geoff Dougherty
Publisher: Springer Science & Business Media
ISBN: 1461453232
Category : Computers
Languages : en
Pages : 203

Get Book Here

Book Description
The use of pattern recognition and classification is fundamental to many of the automated electronic systems in use today. However, despite the existence of a number of notable books in the field, the subject remains very challenging, especially for the beginner. Pattern Recognition and Classification presents a comprehensive introduction to the core concepts involved in automated pattern recognition. It is designed to be accessible to newcomers from varied backgrounds, but it will also be useful to researchers and professionals in image and signal processing and analysis, and in computer vision. Fundamental concepts of supervised and unsupervised classification are presented in an informal, rather than axiomatic, treatment so that the reader can quickly acquire the necessary background for applying the concepts to real problems. More advanced topics, such as semi-supervised classification, combining clustering algorithms and relevance feedback are addressed in the later chapters. This book is suitable for undergraduates and graduates studying pattern recognition and machine learning.