Introduction to Semiconductor Physics

Introduction to Semiconductor Physics PDF Author: Holger T Grahn
Publisher: World Scientific Publishing Company
ISBN: 9813105151
Category : Science
Languages : en
Pages : 196

Get Book

Book Description
This book covers the physics of semiconductors on an introductory level, assuming that the reader already has some knowledge of condensed matter physics. Crystal structure, band structure, carrier transport, phonons, scattering processes and optical properties are presented for typical semiconductors such as silicon, but III–V and II–VI compounds are also included. In view of the increasing importance of wide-gap semiconductors, the electronic and optical properties of these materials are dealt with too.

Introduction to Semiconductor Physics

Introduction to Semiconductor Physics PDF Author: Holger T Grahn
Publisher: World Scientific Publishing Company
ISBN: 9813105151
Category : Science
Languages : en
Pages : 196

Get Book

Book Description
This book covers the physics of semiconductors on an introductory level, assuming that the reader already has some knowledge of condensed matter physics. Crystal structure, band structure, carrier transport, phonons, scattering processes and optical properties are presented for typical semiconductors such as silicon, but III–V and II–VI compounds are also included. In view of the increasing importance of wide-gap semiconductors, the electronic and optical properties of these materials are dealt with too.

Semiconductor Physics and Devices

Semiconductor Physics and Devices PDF Author: Donald A. Neamen
Publisher:
ISBN: 9780071198622
Category : Semiconductores
Languages : en
Pages : 746

Get Book

Book Description
This text aims to provide the fundamentals necessary to understand semiconductor device characteristics, operations and limitations. Quantum mechanics and quantum theory are explored, and this background helps give students a deeper understanding of the essentials of physics and semiconductors.

Semiconductor Physics

Semiconductor Physics PDF Author: Karlheinz Seeger
Publisher: Springer Science & Business Media
ISBN: 3662023512
Category : Technology & Engineering
Languages : en
Pages : 476

Get Book

Book Description
The first edition of "Semiconductor Physics" was published in 1973 by Springer-Verlag Wien-New York as a paperback in the Springer Study Edition. In 1977, a Russian translation by Professor Yu. K. Pozhela and coworkers at Vilnius/USSR was published by Izdatelstvo "MIR", Mo scow. Since then new ideas have been developed in the field of semi conductors such as electron hole droplets, dangling bond saturation in amorphous silicon by hydrogen, or the determination of the fine struc ture constant from surface quantization in inversion layers. New tech niques such as molecular beam epitaxy which has made the realization of the Esaki superlattice possible, deep level transient spectroscopy, and refined a. c. Hall techniques have evolved. Now that the Viennese edition is about to go out of print, Springer-Verlag, Berlin-Heidelberg-New York is giving me the opportunity to include these new subjects in a monograph to appear in the Solid-State Sciences series. Again it has been the intention to cover the field of semiconductor physics comprehensively, although some chapters such as diffusion of hot carriers and their galvanomagnetic phenomena, as well as super conducting degenerate semiconductors and the appendices, had to go for commercial reasons. The emphasis is more on physics than on device as pects.

Introductory Semiconductor Device Physics

Introductory Semiconductor Device Physics PDF Author: Greg Parker
Publisher: CRC Press
ISBN: 1482262983
Category : Science
Languages : en
Pages : 301

Get Book

Book Description
Introduction to Semiconductor Device Physics is a popular and established text that offers a thorough introduction to the underlying physics of semiconductor devices. It begins with a review of basic solid state physics, then goes on to describe the properties of semiconductors including energy bands, the concept of effective mass, carrier concentr

The Physics of Semiconductors

The Physics of Semiconductors PDF Author: Marius Grundmann
Publisher: Springer Nature
ISBN: 3030515699
Category : Technology & Engineering
Languages : en
Pages : 905

Get Book

Book Description
The 4th edition of this highly successful textbook features copious material for a complete upper-level undergraduate or graduate course, guiding readers to the point where they can choose a specialized topic and begin supervised research. The textbook provides an integrated approach beginning from the essential principles of solid-state and semiconductor physics to their use in various classic and modern semiconductor devices for applications in electronics and photonics. The text highlights many practical aspects of semiconductors: alloys, strain, heterostructures, nanostructures, amorphous semiconductors, and noise, which are essential aspects of modern semiconductor research but often omitted in other textbooks. This textbook also covers advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, and transparent conductive oxides. The 4th edition includes many updates and chapters on 2D materials and aspects of topology. The text derives explicit formulas for many results to facilitate a better understanding of the topics. Having evolved from a highly regarded two-semester course on the topic, The Physics of Semiconductors requires little or no prior knowledge of solid-state physics. More than 2100 references guide the reader to historic and current literature including original papers, review articles and topical books, providing a go-to point of reference for experienced researchers as well.

Semiconductor Physics

Semiconductor Physics PDF Author: Karlheinz Seeger
Publisher: Springer Science & Business Media
ISBN: 3662024454
Category : Science
Languages : en
Pages : 490

Get Book

Book Description
It is a pleasure to take the opportunity to express my sincere grati tude to many colleagues who provided valuable hints for improvements, even including lists of misprints (which I hope have now been complete ly eliminated). It is not possible to name all of them, and so I will only mention the interesting discussions over so many years I had with Pro fessor Hans W. Pötzl of the Technical University of Vienna on the oc casion of our common weekly semiconductor seminar. I am grateful to Professor H.-J. Queisser and Professor M. Cardona for helpful criticism. Special thanks are due to Frau Jitka Fucik for typing and Frau Viktoria Köver for drawing services. The cooperation with Dr. H.K. Lotsch of Springer-Verlag has been a pleasure. Vienna, January 1982 K. Seeger Contents 1. Elementary Properties of Semiconductors . . .. I 1.1 Insulator - Semiconductor - Semimetal - Metal 1 1.2 The Positive Hole ... 3 1.3 Conduction Processes, Compensation, Law ofMass Action 4 Problems . 8 2. Energy Band Structure . 10 2.1 Single and Periodically Repeated Potential Well 10 2.2 Energy Bands by Tight Binding ofElectrons to Atoms 17 2.3 The Brillouin Zone 21 2.4 Constant Energy Surfaces 30 Problems . 33 3. Semiconductor Statistics 34 3.1 Fermi Statistics ... 35 3.2 Occupation Probabilities ofImpurity Levels 39 Problems . 45 4. Charge and Energy Transport in a Nondegenerate Electron Gas.

Physics of Semiconductor Devices

Physics of Semiconductor Devices PDF Author: J.-P. Colinge
Publisher: Springer Science & Business Media
ISBN: 0306476223
Category : Technology & Engineering
Languages : en
Pages : 436

Get Book

Book Description
Physics of Semiconductor Devices covers both basic classic topics such as energy band theory and the gradual-channel model of the MOSFET as well as advanced concepts and devices such as MOSFET short-channel effects, low-dimensional devices and single-electron transistors. Concepts are introduced to the reader in a simple way, often using comparisons to everyday-life experiences such as simple fluid mechanics. They are then explained in depth and mathematical developments are fully described. Physics of Semiconductor Devices contains a list of problems that can be used as homework assignments or can be solved in class to exemplify the theory. Many of these problems make use of Matlab and are aimed at illustrating theoretical concepts in a graphical manner.

Basic Semiconductor Physics

Basic Semiconductor Physics PDF Author: Chihiro Hamaguchi
Publisher: Springer Science & Business Media
ISBN: 3662046563
Category : Technology & Engineering
Languages : en
Pages : 444

Get Book

Book Description
A detailed description of the basic physics of semiconductors. All the important equations describing the properties of these materials are derived without the help of other textbooks. The reader is assumed to have only a basic command of mathematics and some elementary semiconductor physics. The text covers a wide range of important semiconductor phenomena, from the simple to the advanced.

Semiconductor Physics

Semiconductor Physics PDF Author: Karlheinz Seeger
Publisher: Springer Science & Business Media
ISBN: 3662098555
Category : Science
Languages : en
Pages : 548

Get Book

Book Description
This book will be useful to solid-state scientists, device engineers, and students involved in semiconductor design and technology. It provides a lucid account of band structure, density of states, charge transport, energy transport, and optical processes, along with a detailed description of many devices. It includes sections on superlattices and quantum well structures, the effects of deep-level impurities on transport, and the quantum Hall effect. This 8th edition has been revised and updated, including several new sections.

Fundamentals of Semiconductor Physics and Devices

Fundamentals of Semiconductor Physics and Devices PDF Author: Rolf Enderlein
Publisher: World Scientific
ISBN: 9814499951
Category : Science
Languages : en
Pages : 792

Get Book

Book Description
This book is an introduction to the principles of semiconductor physics, linking its scientific aspects with practical applications. It is addressed to both readers who wish to learn semiconductor physics and those seeking to understand semiconductor devices. It is particularly well suited for those who want to do both. Intended as a teaching vehicle, the book is written in an expository manner aimed at conveying a deep and coherent understanding of the field. It provides clear and complete derivations of the basic concepts of modern semiconductor physics. The mathematical arguments and physical interpretations are well balanced: they are presented in a measure designed to ensure the integrity of the delivery of the subject matter in a fully comprehensible form. Experimental procedures and measured data are included as well. The reader is generally not expected to have background in quantum mechanics and solid state physics beyond the most elementary level. Nonetheless, the presentation of this book is planned to bring the student to the point of research/design capability as a scientist or engineer. Moreover, it is sufficiently well endowed with detailed knowledge of the field, including recent developments bearing on submicron semiconductor structures, that the book also constitutes a valuable reference resource. In Chapter 1, basic features of the atomic structures, chemical nature and the macroscopic properties of semiconductors are discussed. The band structure of ideal semiconductor crystals is treated in Chapter 2, together with the underlying one-electron picture and other fundamental concepts. Chapter 2 also provides the requisite background of the tight binding method and the k.p-method, which are later used extensively. The electron states of shallow and deep centers, clean semiconductor surfaces, quantum wells and superlattices, as well as the effects of external electric and magnetic fields, are treated in Chapter 3. The one- or multi-band effective mass theory is used wherever this method is applicable. A summary of group theory for application in semiconductor physics is given in an Appendix. Chapter 4 deals with the statistical distribution of charge carriers over the band and localized states in thermodynamic equilibrium. Non-equilibrium processes in semiconductors are treated in Chapter 5. The physics of semiconductor junctions (pn-, hetero-, metal-, and insulator-) is developed in Chapter 6 under conditions of thermodynamic equilibrium, and in Chapter 7 under non-equilibrium conditions. On this basis, the most important electronic and opto-electronic semiconductor devices are treated, among them uni- and bi-polar transistors, photodetectors, solar cells, and injection lasers. A summary of group theory for applications in semiconductors is given in an Appendix. Contents:Characterization of SemiconductorsElectronic Structure of Ideal CrystalsElectronic Structure of Semiconductor Crystals with PerturbationsElectron System in Thermodynamic EquilibriumNon-Equilibrium Processes in SemiconductorsSemiconductor Junctions in Thermodynamic EquilibriumSemiconductor Junctions Under Non-Equilibrium Conditions Readership: Undergraduates, graduates and researchers in the fields of physics and engineering. keywords:Semiconductors;Transistor;Devices;Heterojunctions;Microstructures;Band-Structure;Luttinger-Kohn-Model;Kane-Model;Deep-Levels;Transport;Semiconductor Physics;Fundamental Physical Phenomena;General Backround;Characterization of Semiconductor;Electronic Structur of Semiconductors;Semiconductor Junctions the Thermodynamic Equilibrium;Semiconductor Junctions Under Non-Equilibrium Conductions; “… The reader who has only a first acquaintance with semiconductor physics will find that this book has fully detailed explanations of the fundamental physical phenomena, providing a good general background … A brilliant discussion of artifical atomic superstructures of nanometer length scale establishes a link to the most active field of semiconductor physics … In my opinion the book of R Enderlein and N J M Horing Fundamentals of Semiconductor Physics and Devices is a valuable contribution to the modern didactic literature on the physics of semiconductors. Morever, it is of considerable value as a reference for specialists as well.” J T Devreese Professor at the Physics Department University of Antwerpen, Belgium “In Fundamentals of Semiconductor Physics and Devices, R Enderiein and N J M Horing have provided a very extensive and detailed text on the physics underlying semiconductor devices. More so than any other current text, this book provides a greatly expanded discussion of modern tight-binding methods, helping the students to understand these aspects of electronic structure in clear, simple terms. In connection with this the authors offer a very detailed discussion of deep levels in semiconductors, which are so important to semiconducting properties. Also, in the discussion of transport properties, the book goes into much greater depth about nonlinear and nonequilibrium processes than is usual. It is quite a unique contribution, containing the basic physics which tends to be missing from device-oriented books, but going much further into the essentials needed for device development than any solid-state-physics text.” Walter A Harrison Professor of Applied Physics Stanford University, USA