Author: Kalyan Kumar Roy
Publisher: Springer Science & Business Media
ISBN: 354072334X
Category : Science
Languages : en
Pages : 661
Book Description
This book introduces the principles of gravitational, magnetic, electrostatic, direct current electrical and electromagnetic fields, with detailed solutions of Laplace and electromagnetic wave equations by the method of separation of variables. Discussion includes behaviours of the scalar and vector potential and the nature of the solutions of these boundary value problems, along with the use of complex variables and conformal transformation, Green's theorem, Green's formula and Green's functions.
Geophysical Potential Fields
Author: Lev Eppelbaum
Publisher: Elsevier
ISBN: 0128196467
Category : Science
Languages : en
Pages : 476
Book Description
Geophysical Potential Fields: Geological and Environmental Applications, Volume Two, investigates the similarities and differences of potential geophysical fields, including gravity, magnetics, temperature, resistivity and self-potential, along with the influence of noise on these fields. As part of the Computational Geophysics series, this volume provides computational examples and methods for effectively solving geophysical problems in a full cycle manner. Including both quantitative and qualitative analysis, the book offers different filtering and transformation procedures, integrated analysis, and special interpretation methodologies, also presenting a developed 3D algorithm for combined modeling of gravity and magnetic fields in complex environments. The book also includes applications of the unified potential field system, such as studying deep structure, searching hydrocarbon and ore deposits, localizing buried water horizons and rockslide areas, tectono-structural mapping of water basins, and classifying archaeological targets. It is an ideal and unique resource for geophysicists, exploration geologists, archaeologists and environmental scientists.
Publisher: Elsevier
ISBN: 0128196467
Category : Science
Languages : en
Pages : 476
Book Description
Geophysical Potential Fields: Geological and Environmental Applications, Volume Two, investigates the similarities and differences of potential geophysical fields, including gravity, magnetics, temperature, resistivity and self-potential, along with the influence of noise on these fields. As part of the Computational Geophysics series, this volume provides computational examples and methods for effectively solving geophysical problems in a full cycle manner. Including both quantitative and qualitative analysis, the book offers different filtering and transformation procedures, integrated analysis, and special interpretation methodologies, also presenting a developed 3D algorithm for combined modeling of gravity and magnetic fields in complex environments. The book also includes applications of the unified potential field system, such as studying deep structure, searching hydrocarbon and ore deposits, localizing buried water horizons and rockslide areas, tectono-structural mapping of water basins, and classifying archaeological targets. It is an ideal and unique resource for geophysicists, exploration geologists, archaeologists and environmental scientists.
Potential Theory in Applied Geophysics
Author: Kalyan Kumar Roy
Publisher: Springer Science & Business Media
ISBN: 354072334X
Category : Science
Languages : en
Pages : 661
Book Description
This book introduces the principles of gravitational, magnetic, electrostatic, direct current electrical and electromagnetic fields, with detailed solutions of Laplace and electromagnetic wave equations by the method of separation of variables. Discussion includes behaviours of the scalar and vector potential and the nature of the solutions of these boundary value problems, along with the use of complex variables and conformal transformation, Green's theorem, Green's formula and Green's functions.
Publisher: Springer Science & Business Media
ISBN: 354072334X
Category : Science
Languages : en
Pages : 661
Book Description
This book introduces the principles of gravitational, magnetic, electrostatic, direct current electrical and electromagnetic fields, with detailed solutions of Laplace and electromagnetic wave equations by the method of separation of variables. Discussion includes behaviours of the scalar and vector potential and the nature of the solutions of these boundary value problems, along with the use of complex variables and conformal transformation, Green's theorem, Green's formula and Green's functions.
Geophysical Potential Fields
Author: Lev Eppelbaum
Publisher: Elsevier
ISBN: 0128116862
Category : Science
Languages : en
Pages : 478
Book Description
Geophysical Potential Fields: Geological and Environmental Applications, Volume Two, investigates the similarities and differences of potential geophysical fields, including gravity, magnetics, temperature, resistivity and self-potential, along with the influence of noise on these fields. As part of the Computational Geophysics series, this volume provides computational examples and methods for effectively solving geophysical problems in a full cycle manner. Including both quantitative and qualitative analysis, the book offers different filtering and transformation procedures, integrated analysis, and special interpretation methodologies, also presenting a developed 3D algorithm for combined modeling of gravity and magnetic fields in complex environments. The book also includes applications of the unified potential field system, such as studying deep structure, searching hydrocarbon and ore deposits, localizing buried water horizons and rockslide areas, tectono-structural mapping of water basins, and classifying archaeological targets. It is an ideal and unique resource for geophysicists, exploration geologists, archaeologists and environmental scientists. - Clearly demonstrates the successive stages of geophysical field analysis for different geological and environmental targets - Provides a unified system for potential geophysical field analysis that is demonstrated by numerous examples of system application - Demonstrates the possibilities for rapidly and effectively interpreting anomalies, receiving some knowledge of modern wavelet, diffusion maps and informational approach applications in geophysics, and combined gravity-magnetic methodology of 3D modeling - Includes text of the Geological Space Field Calculation (GSFC) software intended for 3D combined modeling of gravity and magnetic fields in complex environments
Publisher: Elsevier
ISBN: 0128116862
Category : Science
Languages : en
Pages : 478
Book Description
Geophysical Potential Fields: Geological and Environmental Applications, Volume Two, investigates the similarities and differences of potential geophysical fields, including gravity, magnetics, temperature, resistivity and self-potential, along with the influence of noise on these fields. As part of the Computational Geophysics series, this volume provides computational examples and methods for effectively solving geophysical problems in a full cycle manner. Including both quantitative and qualitative analysis, the book offers different filtering and transformation procedures, integrated analysis, and special interpretation methodologies, also presenting a developed 3D algorithm for combined modeling of gravity and magnetic fields in complex environments. The book also includes applications of the unified potential field system, such as studying deep structure, searching hydrocarbon and ore deposits, localizing buried water horizons and rockslide areas, tectono-structural mapping of water basins, and classifying archaeological targets. It is an ideal and unique resource for geophysicists, exploration geologists, archaeologists and environmental scientists. - Clearly demonstrates the successive stages of geophysical field analysis for different geological and environmental targets - Provides a unified system for potential geophysical field analysis that is demonstrated by numerous examples of system application - Demonstrates the possibilities for rapidly and effectively interpreting anomalies, receiving some knowledge of modern wavelet, diffusion maps and informational approach applications in geophysics, and combined gravity-magnetic methodology of 3D modeling - Includes text of the Geological Space Field Calculation (GSFC) software intended for 3D combined modeling of gravity and magnetic fields in complex environments
Introduction to Engineering Electromagnetic Fields
Author: Korada Umashankar
Publisher: World Scientific
ISBN: 9789971509217
Category : Technology & Engineering
Languages : en
Pages : 688
Book Description
This is a textbook designed to provide analytical background material in the area of Engineering Electromagnetic Fields for the senior level undergraduate and preparatory level graduate electrical engineering students. It is also an excellent reference book for researchers in the field of computational electromagnetic fields. The textbook covers ? Static Electric and Magnetic Fields: The basic laws governing the Electrostatics, Magnetostatics with engineering examples are presented which are enough to understand the fields and the electric current and charge sources. Dynamic Electromagnetic Fields: The Maxwell's equations in Time-Domain and solutions, the Maxwell's equations in Frequency-Domain and solutions. Extensive approaches are presented to solve partial differential equations satisfying electromagnetic boundary value problems. Foundation to electromagnetic field radiation, guided wave propagation is discussed to expose at the undergraduate level application of the Maxwell's equations to practical engineering problems.
Publisher: World Scientific
ISBN: 9789971509217
Category : Technology & Engineering
Languages : en
Pages : 688
Book Description
This is a textbook designed to provide analytical background material in the area of Engineering Electromagnetic Fields for the senior level undergraduate and preparatory level graduate electrical engineering students. It is also an excellent reference book for researchers in the field of computational electromagnetic fields. The textbook covers ? Static Electric and Magnetic Fields: The basic laws governing the Electrostatics, Magnetostatics with engineering examples are presented which are enough to understand the fields and the electric current and charge sources. Dynamic Electromagnetic Fields: The Maxwell's equations in Time-Domain and solutions, the Maxwell's equations in Frequency-Domain and solutions. Extensive approaches are presented to solve partial differential equations satisfying electromagnetic boundary value problems. Foundation to electromagnetic field radiation, guided wave propagation is discussed to expose at the undergraduate level application of the Maxwell's equations to practical engineering problems.
Introduction to A Theory of Fields
Author: I. W. Mackintosh
Publisher: New Generation Publishing
ISBN: 1785076043
Category : Fiction
Languages : en
Pages : 272
Book Description
This book gives a simplified account of a new fundamental theory of physics. It is based on two postulates (or laws) and from these are derived a set of Field Equations. The solutions of these equations account for many of the features of modern physics. These solutions lead to the prediction of Newton's laws of motion and gravitation, Coulomb's law and electromagnetism, and the prediction of the values of the gravitational constant and the charge on the electron which are close to the measured values. They also lead to a formula for Plank's constant, and to SchrOdinger's equation and the basis for quantum mechanics. Particles are not points. Structures are proposed for the proton, neutron, electron, electron neutrino, muon, pion and kaons. The theory provides an account of the up, down, strange, charm and bottom quarks and the W^A and Z particles. The book is mathematical, but simplified as much as possible to make the book accessible to a wide range of readers.
Publisher: New Generation Publishing
ISBN: 1785076043
Category : Fiction
Languages : en
Pages : 272
Book Description
This book gives a simplified account of a new fundamental theory of physics. It is based on two postulates (or laws) and from these are derived a set of Field Equations. The solutions of these equations account for many of the features of modern physics. These solutions lead to the prediction of Newton's laws of motion and gravitation, Coulomb's law and electromagnetism, and the prediction of the values of the gravitational constant and the charge on the electron which are close to the measured values. They also lead to a formula for Plank's constant, and to SchrOdinger's equation and the basis for quantum mechanics. Particles are not points. Structures are proposed for the proton, neutron, electron, electron neutrino, muon, pion and kaons. The theory provides an account of the up, down, strange, charm and bottom quarks and the W^A and Z particles. The book is mathematical, but simplified as much as possible to make the book accessible to a wide range of readers.
Analysis of Geophysical Potential Fields
Author: P.S. Naidu
Publisher: Elsevier
ISBN: 0080527124
Category : Science
Languages : en
Pages : 311
Book Description
When some useful information is hidden behind a mass of unwanted information we often resort to information processing used in its broad sense or specifically to signal processing when the useful information is a waveform. In geophysical surveys, in particular in aeromagnetic and gravity surveys, from the measured field it is often difficult to say much about any one specific target unless it is close to the surface and well isolated from the rest. The digital signal processing approach would enable us to bring out the underlying model of the source, that is, the geological structure. Some of the tools of dsp such as digital filtering, spectrum estimation, inversion, etc., have found extensive applications in aeromagnetic and gravity map analysis. There are other emerging applications of dsp in the area of inverse filtering, three dimensional visualization, etc.The purpose of this book is to bring numerous tools of dsp to the geophysical community, in particular, to those who are entering the geophysical profession. Also the practicing geophysicists, involved in the aeromagnetic and gravity data analysis, using the commercially available software packages, will find this book useful in answering their questions on "why and how?". It is hoped that such a background would enable the practising geophysicists to appreciate the prospects and limitations of the dsp in extracting useful information from the potential field maps. The topics covered are: potential field signals and models, digital filtering in two dimensions, spectrum estimation and application, parameter estimation with error bounds.
Publisher: Elsevier
ISBN: 0080527124
Category : Science
Languages : en
Pages : 311
Book Description
When some useful information is hidden behind a mass of unwanted information we often resort to information processing used in its broad sense or specifically to signal processing when the useful information is a waveform. In geophysical surveys, in particular in aeromagnetic and gravity surveys, from the measured field it is often difficult to say much about any one specific target unless it is close to the surface and well isolated from the rest. The digital signal processing approach would enable us to bring out the underlying model of the source, that is, the geological structure. Some of the tools of dsp such as digital filtering, spectrum estimation, inversion, etc., have found extensive applications in aeromagnetic and gravity map analysis. There are other emerging applications of dsp in the area of inverse filtering, three dimensional visualization, etc.The purpose of this book is to bring numerous tools of dsp to the geophysical community, in particular, to those who are entering the geophysical profession. Also the practicing geophysicists, involved in the aeromagnetic and gravity data analysis, using the commercially available software packages, will find this book useful in answering their questions on "why and how?". It is hoped that such a background would enable the practising geophysicists to appreciate the prospects and limitations of the dsp in extracting useful information from the potential field maps. The topics covered are: potential field signals and models, digital filtering in two dimensions, spectrum estimation and application, parameter estimation with error bounds.
Concise Introduction to Electromagnetic Fields
Author: Hamad M. Alkhoori
Publisher: Springer Nature
ISBN: 3031603311
Category :
Languages : en
Pages : 279
Book Description
Publisher: Springer Nature
ISBN: 3031603311
Category :
Languages : en
Pages : 279
Book Description
An Introduction to Fluid Mechanics
Author: Faith A. Morrison
Publisher: Cambridge University Press
ISBN: 1107003539
Category : Mathematics
Languages : en
Pages : 945
Book Description
"Why Study Fluid Mechanics? 1.1 Getting Motivated Flows are beautiful and complex. A swollen creek tumbles over rocks and through crevasses, swirling and foaming. A child plays with sticky tafy, stretching and reshaping the candy as she pulls it and twist it in various ways. Both the water and the tafy are fluids, and their motions are governed by the laws of nature. Our goal is to introduce the reader to the analysis of flows using the laws of physics and the language of mathematics. On mastering this material, the reader becomes able to harness flow to practical ends or to create beauty through fluid design. In this text we delve deeply into the mathematical analysis of flows, but before beginning, it is reasonable to ask if it is necessary to make this significant mathematical effort. After all, we can appreciate a flowing stream without understanding why it behaves as it does. We can also operate machines that rely on fluid behavior - drive a car for exam- 15 behavior? mathematical analysis. ple - without understanding the fluid dynamics of the engine, and we can even repair and maintain engines, piping networks, and other complex systems without having studied the mathematics of flow What is the purpose, then, of learning to mathematically describe fluid The answer to this question is quite practical: knowing the patterns fluids form and why they are formed, and knowing the stresses fluids generate and why they are generated is essential to designing and optimizing modern systems and devices. While the ancients designed wells and irrigation systems without calculations, we can avoid the wastefulness and tediousness of the trial-and-error process by using mathematical models"--
Publisher: Cambridge University Press
ISBN: 1107003539
Category : Mathematics
Languages : en
Pages : 945
Book Description
"Why Study Fluid Mechanics? 1.1 Getting Motivated Flows are beautiful and complex. A swollen creek tumbles over rocks and through crevasses, swirling and foaming. A child plays with sticky tafy, stretching and reshaping the candy as she pulls it and twist it in various ways. Both the water and the tafy are fluids, and their motions are governed by the laws of nature. Our goal is to introduce the reader to the analysis of flows using the laws of physics and the language of mathematics. On mastering this material, the reader becomes able to harness flow to practical ends or to create beauty through fluid design. In this text we delve deeply into the mathematical analysis of flows, but before beginning, it is reasonable to ask if it is necessary to make this significant mathematical effort. After all, we can appreciate a flowing stream without understanding why it behaves as it does. We can also operate machines that rely on fluid behavior - drive a car for exam- 15 behavior? mathematical analysis. ple - without understanding the fluid dynamics of the engine, and we can even repair and maintain engines, piping networks, and other complex systems without having studied the mathematics of flow What is the purpose, then, of learning to mathematically describe fluid The answer to this question is quite practical: knowing the patterns fluids form and why they are formed, and knowing the stresses fluids generate and why they are generated is essential to designing and optimizing modern systems and devices. While the ancients designed wells and irrigation systems without calculations, we can avoid the wastefulness and tediousness of the trial-and-error process by using mathematical models"--
Introduction To Modern Planar Transmission Lines
Author: Anand K. Verma
Publisher: John Wiley & Sons
ISBN: 1119632471
Category : Technology & Engineering
Languages : en
Pages : 946
Book Description
Provides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach begins with a discussion of waves on transmission lines and waves in material medium, including a large number of illustrative examples from published results. After explaining the electrical properties of dielectric media, the book moves on to the details of various transmission lines including waveguide, microstrip line, co-planar waveguide, strip line, slot line, and coupled transmission lines. A number of special and advanced topics are discussed in later chapters, such as fabrication of planar transmission lines, static variational methods for planar transmission lines, multilayer planar transmission lines, spectral domain analysis, resonators, periodic lines and surfaces, and metamaterial realization and circuit models. Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study Introduction to Modern Planar Transmission Lines is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.
Publisher: John Wiley & Sons
ISBN: 1119632471
Category : Technology & Engineering
Languages : en
Pages : 946
Book Description
Provides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach begins with a discussion of waves on transmission lines and waves in material medium, including a large number of illustrative examples from published results. After explaining the electrical properties of dielectric media, the book moves on to the details of various transmission lines including waveguide, microstrip line, co-planar waveguide, strip line, slot line, and coupled transmission lines. A number of special and advanced topics are discussed in later chapters, such as fabrication of planar transmission lines, static variational methods for planar transmission lines, multilayer planar transmission lines, spectral domain analysis, resonators, periodic lines and surfaces, and metamaterial realization and circuit models. Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study Introduction to Modern Planar Transmission Lines is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.
The Rapid Evaluation of Potential Fields in Particle Systems
Author: Leslie Greengard
Publisher: MIT Press
ISBN: 9780262071109
Category : Computers
Languages : en
Pages : 120
Book Description
The evaluation of Coulombic or gravitational interactions in large ensembles of particles is an integral part of the numerical simulation of a large number of physical processes. Examples include celestial mechanics, plasma physics, the vortex method in fluid dynamics, molecular dynamics, molecular dynamics, and the solution of the Laplace equation via potential theory. A numerical model follows the trajectories of a number of particles moving in accordance with Newton's second law of motion in a field generated by the whole ensemble. In many situations, in order to be of physical interest, the simulation has to involve thousands of particles (or more), and the fields have to be evaluated for a large number of configurations. Unfortunately, an amount of work of the order O N-sg has traditionally been required to evaluate all pairwise interactions in a system of N particles, unless some approximation or truncation method is used. Large scale simulations have been extremely expensive in some cases, and prohibitive in others. An algorithm is presented for the rapid evaluation of the potential and force fields in large scale systems of particles. To evaluate all pairwise Coulombic interactions of N particles to within round off error, the algorithm requires an amount of work proportional to N, and this estimate does not depend on the statistics of the distribution. Both two and three dimensional versions of the algorithm have been constructed. Applications to several problems in physics, chemistry, biology, and numerical complex analysis are discussed.
Publisher: MIT Press
ISBN: 9780262071109
Category : Computers
Languages : en
Pages : 120
Book Description
The evaluation of Coulombic or gravitational interactions in large ensembles of particles is an integral part of the numerical simulation of a large number of physical processes. Examples include celestial mechanics, plasma physics, the vortex method in fluid dynamics, molecular dynamics, molecular dynamics, and the solution of the Laplace equation via potential theory. A numerical model follows the trajectories of a number of particles moving in accordance with Newton's second law of motion in a field generated by the whole ensemble. In many situations, in order to be of physical interest, the simulation has to involve thousands of particles (or more), and the fields have to be evaluated for a large number of configurations. Unfortunately, an amount of work of the order O N-sg has traditionally been required to evaluate all pairwise interactions in a system of N particles, unless some approximation or truncation method is used. Large scale simulations have been extremely expensive in some cases, and prohibitive in others. An algorithm is presented for the rapid evaluation of the potential and force fields in large scale systems of particles. To evaluate all pairwise Coulombic interactions of N particles to within round off error, the algorithm requires an amount of work proportional to N, and this estimate does not depend on the statistics of the distribution. Both two and three dimensional versions of the algorithm have been constructed. Applications to several problems in physics, chemistry, biology, and numerical complex analysis are discussed.