Introduction to Partial Differential Equations and Hilbert Space Methods

Introduction to Partial Differential Equations and Hilbert Space Methods PDF Author: Karl E. Gustafson
Publisher: Courier Corporation
ISBN: 0486140873
Category : Mathematics
Languages : en
Pages : 500

Get Book Here

Book Description
Easy-to-use text examines principal method of solving partial differential equations, 1st-order systems, computation methods, and much more. Over 600 exercises, with answers for many. Ideal for a 1-semester or full-year course.

Introduction to Partial Differential Equations and Hilbert Space Methods

Introduction to Partial Differential Equations and Hilbert Space Methods PDF Author: Karl E. Gustafson
Publisher: Courier Corporation
ISBN: 0486140873
Category : Mathematics
Languages : en
Pages : 500

Get Book Here

Book Description
Easy-to-use text examines principal method of solving partial differential equations, 1st-order systems, computation methods, and much more. Over 600 exercises, with answers for many. Ideal for a 1-semester or full-year course.

Hilbert Space Methods in Partial Differential Equations

Hilbert Space Methods in Partial Differential Equations PDF Author: Ralph E. Showalter
Publisher: Courier Corporation
ISBN: 0486135799
Category : Mathematics
Languages : en
Pages : 226

Get Book Here

Book Description
This graduate-level text opens with an elementary presentation of Hilbert space theory sufficient for understanding the rest of the book. Additional topics include boundary value problems, evolution equations, optimization, and approximation.1979 edition.

Partial Differential Equations

Partial Differential Equations PDF Author: Avner Friedman
Publisher: Courier Corporation
ISBN: 0486469190
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description
Largely self-contained, this three-part treatment focuses on elliptic and evolution equations, concluding with a series of independent topics directly related to the methods and results of the preceding sections. 1969 edition.

Introduction to Partial Differential Equations and Hilbert Space Methods

Introduction to Partial Differential Equations and Hilbert Space Methods PDF Author: Karl E. Gustafson
Publisher: Courier Corporation
ISBN: 9780486612713
Category : Mathematics
Languages : en
Pages : 492

Get Book Here

Book Description
This volume offers an excellent undergraduate-level introduction to the main topics, methods, and applications of partial differential equations. Chapter 1 presents a full introduction to partial differential equations and Fourier series as related to applied mathematics. Chapter 2 begins with a more comprehensive look at the principal method for solving partial differential equations — the separation of variables — and then more fully develops that approach in the contexts of Hilbert space and numerical methods. Chapter 3 includes an expanded treatment of first-order systems, a short introduction to computational methods, and aspects of topical research on the partial differential equations of fluid dynamics. With over 600 problems and exercises, along with explanations, examples, and a comprehensive section of answers, hints, and solutions, this superb, easy-to-use text is ideal for a one-semester or full-year course. It will also provide the mathematically inclined layperson with a stimulating review of the subject's essentials.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Functional Analysis, Sobolev Spaces and Partial Differential Equations PDF Author: Haim Brezis
Publisher: Springer Science & Business Media
ISBN: 0387709142
Category : Mathematics
Languages : en
Pages : 600

Get Book Here

Book Description
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Partial Differential Equations

Partial Differential Equations PDF Author: Michael Shearer
Publisher: Princeton University Press
ISBN: 140086660X
Category : Mathematics
Languages : en
Pages : 287

Get Book Here

Book Description
An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors

Partial Differential Equations

Partial Differential Equations PDF Author: Joseph Wloka
Publisher: Cambridge University Press
ISBN: 9780521277594
Category : Mathematics
Languages : en
Pages : 536

Get Book Here

Book Description
A rigorous introduction to the abstract theory of partial differential equations progresses from the theory of distribution and Sobolev spaces to Fredholm operations, the Schauder fixed point theorem and Bochner integrals.

Partial Differential Equations

Partial Differential Equations PDF Author: Jürgen Jost
Publisher: Springer Science & Business Media
ISBN: 1461448093
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description
This book offers an ideal graduate-level introduction to the theory of partial differential equations. The first part of the book describes the basic mathematical problems and structures associated with elliptic, parabolic, and hyperbolic partial differential equations, and explores the connections between these fundamental types. Aspects of Brownian motion or pattern formation processes are also presented. The second part focuses on existence schemes and develops estimates for solutions of elliptic equations, such as Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. In particular, the reader will learn the basic techniques underlying current research in elliptic partial differential equations. This revised and expanded third edition is enhanced with many additional examples that will help motivate the reader. New features include a reorganized and extended chapter on hyperbolic equations, as well as a new chapter on the relations between different types of partial differential equations, including first-order hyperbolic systems, Langevin and Fokker-Planck equations, viscosity solutions for elliptic PDEs, and much more. Also, the new edition contains additional material on systems of elliptic partial differential equations, and it explains in more detail how the Harnack inequality can be used for the regularity of solutions.

Functional Spaces for the Theory of Elliptic Partial Differential Equations

Functional Spaces for the Theory of Elliptic Partial Differential Equations PDF Author: Françoise Demengel
Publisher: Springer Science & Business Media
ISBN: 1447128079
Category : Mathematics
Languages : en
Pages : 480

Get Book Here

Book Description
The theory of elliptic boundary problems is fundamental in analysis and the role of spaces of weakly differentiable functions (also called Sobolev spaces) is essential in this theory as a tool for analysing the regularity of the solutions. This book offers on the one hand a complete theory of Sobolev spaces, which are of fundamental importance for elliptic linear and non-linear differential equations, and explains on the other hand how the abstract methods of convex analysis can be combined with this theory to produce existence results for the solutions of non-linear elliptic boundary problems. The book also considers other kinds of functional spaces which are useful for treating variational problems such as the minimal surface problem. The main purpose of the book is to provide a tool for graduate and postgraduate students interested in partial differential equations, as well as a useful reference for researchers active in the field. Prerequisites include a knowledge of classical analysis, differential calculus, Banach and Hilbert spaces, integration and the related standard functional spaces, as well as the Fourier transformation on the Schwartz space. There are complete and detailed proofs of almost all the results announced and, in some cases, more than one proof is provided in order to highlight different features of the result. Each chapter concludes with a range of exercises of varying levels of difficulty, with hints to solutions provided for many of them.

Beyond Partial Differential Equations

Beyond Partial Differential Equations PDF Author: Horst Reinhard Beyer
Publisher: Springer
ISBN: 3540711295
Category : Mathematics
Languages : en
Pages : 291

Get Book Here

Book Description
This book introduces the treatment of linear and nonlinear (quasi-linear) abstract evolution equations by methods from the theory of strongly continuous semigroups. The theoretical part is accessible to graduate students with basic knowledge in functional analysis, with only some examples requiring more specialized knowledge from the spectral theory of linear, self-adjoint operators in Hilbert spaces. Emphasis is placed on equations of the hyperbolic type which are less often treated in the literature.