Author: Adil Bagirov
Publisher: Springer
ISBN: 3319081144
Category : Business & Economics
Languages : en
Pages : 377
Book Description
This book is the first easy-to-read text on nonsmooth optimization (NSO, not necessarily differentiable optimization). Solving these kinds of problems plays a critical role in many industrial applications and real-world modeling systems, for example in the context of image denoising, optimal control, neural network training, data mining, economics and computational chemistry and physics. The book covers both the theory and the numerical methods used in NSO and provide an overview of different problems arising in the field. It is organized into three parts: 1. convex and nonconvex analysis and the theory of NSO; 2. test problems and practical applications; 3. a guide to NSO software. The book is ideal for anyone teaching or attending NSO courses. As an accessible introduction to the field, it is also well suited as an independent learning guide for practitioners already familiar with the basics of optimization.
Introduction to Nonsmooth Optimization
Author: Adil Bagirov
Publisher: Springer
ISBN: 3319081144
Category : Business & Economics
Languages : en
Pages : 377
Book Description
This book is the first easy-to-read text on nonsmooth optimization (NSO, not necessarily differentiable optimization). Solving these kinds of problems plays a critical role in many industrial applications and real-world modeling systems, for example in the context of image denoising, optimal control, neural network training, data mining, economics and computational chemistry and physics. The book covers both the theory and the numerical methods used in NSO and provide an overview of different problems arising in the field. It is organized into three parts: 1. convex and nonconvex analysis and the theory of NSO; 2. test problems and practical applications; 3. a guide to NSO software. The book is ideal for anyone teaching or attending NSO courses. As an accessible introduction to the field, it is also well suited as an independent learning guide for practitioners already familiar with the basics of optimization.
Publisher: Springer
ISBN: 3319081144
Category : Business & Economics
Languages : en
Pages : 377
Book Description
This book is the first easy-to-read text on nonsmooth optimization (NSO, not necessarily differentiable optimization). Solving these kinds of problems plays a critical role in many industrial applications and real-world modeling systems, for example in the context of image denoising, optimal control, neural network training, data mining, economics and computational chemistry and physics. The book covers both the theory and the numerical methods used in NSO and provide an overview of different problems arising in the field. It is organized into three parts: 1. convex and nonconvex analysis and the theory of NSO; 2. test problems and practical applications; 3. a guide to NSO software. The book is ideal for anyone teaching or attending NSO courses. As an accessible introduction to the field, it is also well suited as an independent learning guide for practitioners already familiar with the basics of optimization.
Nonsmooth Optimization: Analysis And Algorithms With Applications To Optimal Control
Author: Marko M Makela
Publisher: World Scientific
ISBN: 9814522414
Category : Mathematics
Languages : en
Pages : 268
Book Description
This book is a self-contained elementary study for nonsmooth analysis and optimization, and their use in solution of nonsmooth optimal control problems. The first part of the book is concerned with nonsmooth differential calculus containing necessary tools for nonsmooth optimization. The second part is devoted to the methods of nonsmooth optimization and their development. A proximal bundle method for nonsmooth nonconvex optimization subject to nonsmooth constraints is constructed. In the last part nonsmooth optimization is applied to problems arising from optimal control of systems covered by partial differential equations. Several practical problems, like process control and optimal shape design problems are considered.
Publisher: World Scientific
ISBN: 9814522414
Category : Mathematics
Languages : en
Pages : 268
Book Description
This book is a self-contained elementary study for nonsmooth analysis and optimization, and their use in solution of nonsmooth optimal control problems. The first part of the book is concerned with nonsmooth differential calculus containing necessary tools for nonsmooth optimization. The second part is devoted to the methods of nonsmooth optimization and their development. A proximal bundle method for nonsmooth nonconvex optimization subject to nonsmooth constraints is constructed. In the last part nonsmooth optimization is applied to problems arising from optimal control of systems covered by partial differential equations. Several practical problems, like process control and optimal shape design problems are considered.
Introduction to Functional Analysis
Author: Christian Clason
Publisher: Springer Nature
ISBN: 3030527840
Category : Mathematics
Languages : en
Pages : 166
Book Description
Functional analysis has become one of the essential foundations of modern applied mathematics in the last decades, from the theory and numerical solution of differential equations, from optimization and probability theory to medical imaging and mathematical image processing. This textbook offers a compact introduction to the theory and is designed to be used during one semester, fitting exactly 26 lectures of 90 minutes each. It ranges from the topological fundamentals recalled from basic lectures on real analysis to spectral theory in Hilbert spaces. Special attention is given to the central results on dual spaces and weak convergence.
Publisher: Springer Nature
ISBN: 3030527840
Category : Mathematics
Languages : en
Pages : 166
Book Description
Functional analysis has become one of the essential foundations of modern applied mathematics in the last decades, from the theory and numerical solution of differential equations, from optimization and probability theory to medical imaging and mathematical image processing. This textbook offers a compact introduction to the theory and is designed to be used during one semester, fitting exactly 26 lectures of 90 minutes each. It ranges from the topological fundamentals recalled from basic lectures on real analysis to spectral theory in Hilbert spaces. Special attention is given to the central results on dual spaces and weak convergence.
An Introduction to Nonlinear Optimization Theory
Author: Marius Durea
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110427354
Category : Mathematics
Languages : en
Pages : 398
Book Description
The goal of this book is to present the main ideas and techniques in the field of continuous smooth and nonsmooth optimization. Starting with the case of differentiable data and the classical results on constrained optimization problems, and continuing with the topic of nonsmooth objects involved in optimization theory, the book concentrates on both theoretical and practical aspects of this field. This book prepares those who are engaged in research by giving repeated insights into ideas that are subsequently dealt with and illustrated in detail.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110427354
Category : Mathematics
Languages : en
Pages : 398
Book Description
The goal of this book is to present the main ideas and techniques in the field of continuous smooth and nonsmooth optimization. Starting with the case of differentiable data and the classical results on constrained optimization problems, and continuing with the topic of nonsmooth objects involved in optimization theory, the book concentrates on both theoretical and practical aspects of this field. This book prepares those who are engaged in research by giving repeated insights into ideas that are subsequently dealt with and illustrated in detail.
Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition
Author: Michel C. Delfour
Publisher: SIAM
ISBN: 1611975964
Category : Mathematics
Languages : en
Pages : 446
Book Description
This second edition provides an enhanced exposition of the long-overlooked Hadamard semidifferential calculus, first introduced in the 1920s by mathematicians Jacques Hadamard and Maurice René Fréchet. Hadamard semidifferential calculus is possibly the largest family of nondifferentiable functions that retains all the features of classical differential calculus, including the chain rule, making it a natural framework for initiating a large audience of undergraduates and non-mathematicians into the world of nondifferentiable optimization. Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition builds upon its prior editions foundations in Hadamard semidifferential calculus, showcasing new material linked to convex analysis and nonsmooth optimization. It presents a modern treatment of optimization and Hadamard semidifferential calculus while remaining at a level that is accessible to undergraduate students, and challenges students with exercises related to problems in such fields as engineering, mechanics, medicine, physics, and economics. Answers are supplied in Appendix B. Students of mathematics, physics, engineering, economics, and other disciplines that demand a basic knowledge of mathematical analysis and linear algebra will find this a fitting primary or companion resource for their studies. This textbook has been designed and tested for a one-term course at the undergraduate level. In its full version, it is appropriate for a first-year graduate course and as a reference.
Publisher: SIAM
ISBN: 1611975964
Category : Mathematics
Languages : en
Pages : 446
Book Description
This second edition provides an enhanced exposition of the long-overlooked Hadamard semidifferential calculus, first introduced in the 1920s by mathematicians Jacques Hadamard and Maurice René Fréchet. Hadamard semidifferential calculus is possibly the largest family of nondifferentiable functions that retains all the features of classical differential calculus, including the chain rule, making it a natural framework for initiating a large audience of undergraduates and non-mathematicians into the world of nondifferentiable optimization. Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition builds upon its prior editions foundations in Hadamard semidifferential calculus, showcasing new material linked to convex analysis and nonsmooth optimization. It presents a modern treatment of optimization and Hadamard semidifferential calculus while remaining at a level that is accessible to undergraduate students, and challenges students with exercises related to problems in such fields as engineering, mechanics, medicine, physics, and economics. Answers are supplied in Appendix B. Students of mathematics, physics, engineering, economics, and other disciplines that demand a basic knowledge of mathematical analysis and linear algebra will find this a fitting primary or companion resource for their studies. This textbook has been designed and tested for a one-term course at the undergraduate level. In its full version, it is appropriate for a first-year graduate course and as a reference.
Mathematics of Optimization: Smooth and Nonsmooth Case
Author: Giorgio Giorgi
Publisher: Elsevier
ISBN: 008053595X
Category : Mathematics
Languages : en
Pages : 615
Book Description
The book is intended for people (graduates, researchers, but also undergraduates with a good mathematical background) involved in the study of (static) optimization problems (in finite-dimensional spaces). It contains a lot of material, from basic tools of convex analysis to optimality conditions for smooth optimization problems, for non smooth optimization problems and for vector optimization problems.The development of the subjects are self-contained and the bibliographical references are usually treated in different books (only a few books on optimization theory deal also with vector problems), so the book can be a starting point for further readings in a more specialized literature.Assuming only a good (even if not advanced) knowledge of mathematical analysis and linear algebra, this book presents various aspects of the mathematical theory in optimization problems. The treatment is performed in finite-dimensional spaces and with no regard to algorithmic questions. After two chapters concerning, respectively, introductory subjects and basic tools and concepts of convex analysis, the book treats extensively mathematical programming problems in the smmoth case, in the nonsmooth case and finally vector optimization problems.· Self-contained· Clear style and results are either proved or stated precisely with adequate references· The authors have several years experience in this field· Several subjects (some of them non usual in books of this kind) in one single book, including nonsmooth optimization and vector optimization problems· Useful long references list at the end of each chapter
Publisher: Elsevier
ISBN: 008053595X
Category : Mathematics
Languages : en
Pages : 615
Book Description
The book is intended for people (graduates, researchers, but also undergraduates with a good mathematical background) involved in the study of (static) optimization problems (in finite-dimensional spaces). It contains a lot of material, from basic tools of convex analysis to optimality conditions for smooth optimization problems, for non smooth optimization problems and for vector optimization problems.The development of the subjects are self-contained and the bibliographical references are usually treated in different books (only a few books on optimization theory deal also with vector problems), so the book can be a starting point for further readings in a more specialized literature.Assuming only a good (even if not advanced) knowledge of mathematical analysis and linear algebra, this book presents various aspects of the mathematical theory in optimization problems. The treatment is performed in finite-dimensional spaces and with no regard to algorithmic questions. After two chapters concerning, respectively, introductory subjects and basic tools and concepts of convex analysis, the book treats extensively mathematical programming problems in the smmoth case, in the nonsmooth case and finally vector optimization problems.· Self-contained· Clear style and results are either proved or stated precisely with adequate references· The authors have several years experience in this field· Several subjects (some of them non usual in books of this kind) in one single book, including nonsmooth optimization and vector optimization problems· Useful long references list at the end of each chapter
Nonsmooth Analysis and Control Theory
Author: Francis H. Clarke
Publisher: Springer Science & Business Media
ISBN: 0387226257
Category : Mathematics
Languages : en
Pages : 288
Book Description
A clear and succinct presentation of the essentials of this subject, together with some of its applications and a generous helping of interesting exercises. Following an introductory chapter with a taste of what is to come, the next three chapters constitute a course in nonsmooth analysis and identify a coherent and comprehensive approach to the subject, leading to an efficient, natural, and powerful body of theory. The whole is rounded off with a self-contained introduction to the theory of control of ordinary differential equations. The authors have incorporated a number of new results which clarify the relationships between the different schools of thought in the subject, with the aim of making nonsmooth analysis accessible to a wider audience. End-of-chapter problems offer scope for deeper understanding.
Publisher: Springer Science & Business Media
ISBN: 0387226257
Category : Mathematics
Languages : en
Pages : 288
Book Description
A clear and succinct presentation of the essentials of this subject, together with some of its applications and a generous helping of interesting exercises. Following an introductory chapter with a taste of what is to come, the next three chapters constitute a course in nonsmooth analysis and identify a coherent and comprehensive approach to the subject, leading to an efficient, natural, and powerful body of theory. The whole is rounded off with a self-contained introduction to the theory of control of ordinary differential equations. The authors have incorporated a number of new results which clarify the relationships between the different schools of thought in the subject, with the aim of making nonsmooth analysis accessible to a wider audience. End-of-chapter problems offer scope for deeper understanding.
Nonsmooth Approach to Optimization Problems with Equilibrium Constraints
Author: Jiri Outrata
Publisher: Springer Science & Business Media
ISBN: 1475728255
Category : Mathematics
Languages : en
Pages : 281
Book Description
In the early fifties, applied mathematicians, engineers and economists started to pay c10se attention to the optimization problems in which another (lower-Ievel) optimization problem arises as a side constraint. One of the motivating factors was the concept of the Stackelberg solution in game theory, together with its economic applications. Other problems have been encountered in the seventies in natural sciences and engineering. Many of them are of practical importance and have been extensively studied, mainly from the theoretical point of view. Later, applications to mechanics and network design have lead to an extension of the problem formulation: Constraints in form of variation al inequalities and complementarity problems were also admitted. The term "generalized bi level programming problems" was used at first but later, probably in Harker and Pang, 1988, a different terminology was introduced: Mathematical programs with equilibrium constraints, or simply, MPECs. In this book we adhere to MPEC terminology. A large number of papers deals with MPECs but, to our knowledge, there is only one monograph (Luo et al. , 1997). This monograph concentrates on optimality conditions and numerical methods. Our book is oriented similarly, but we focus on those MPECs which can be treated by the implicit programming approach: the equilibrium constraint locally defines a certain implicit function and allows to convert the problem into a mathematical program with a nonsmooth objective.
Publisher: Springer Science & Business Media
ISBN: 1475728255
Category : Mathematics
Languages : en
Pages : 281
Book Description
In the early fifties, applied mathematicians, engineers and economists started to pay c10se attention to the optimization problems in which another (lower-Ievel) optimization problem arises as a side constraint. One of the motivating factors was the concept of the Stackelberg solution in game theory, together with its economic applications. Other problems have been encountered in the seventies in natural sciences and engineering. Many of them are of practical importance and have been extensively studied, mainly from the theoretical point of view. Later, applications to mechanics and network design have lead to an extension of the problem formulation: Constraints in form of variation al inequalities and complementarity problems were also admitted. The term "generalized bi level programming problems" was used at first but later, probably in Harker and Pang, 1988, a different terminology was introduced: Mathematical programs with equilibrium constraints, or simply, MPECs. In this book we adhere to MPEC terminology. A large number of papers deals with MPECs but, to our knowledge, there is only one monograph (Luo et al. , 1997). This monograph concentrates on optimality conditions and numerical methods. Our book is oriented similarly, but we focus on those MPECs which can be treated by the implicit programming approach: the equilibrium constraint locally defines a certain implicit function and allows to convert the problem into a mathematical program with a nonsmooth objective.
Nonsmooth Optimization in Honor of the 60th Birthday of Adil M. Bagirov
Author: Napsu Karmitsa
Publisher: MDPI
ISBN: 3039438352
Category : Science
Languages : en
Pages : 116
Book Description
The aim of this book was to collect the most recent methods developed for NSO and its practical applications. The book contains seven papers: The first is the foreword by the Guest Editors giving a brief review of NSO and its real-life applications and acknowledging the outstanding contributions of Professor Adil Bagirov to both the theoretical and practical aspects of NSO. The second paper introduces a new and very efficient algorithm for solving uncertain unit-commitment (UC) problems. The third paper proposes a new nonsmooth version of the generalized damped Gauss–Newton method for solving nonlinear complementarity problems. In the fourth paper, the abs-linear representation of piecewise linear functions is extended to yield simultaneously their DC decomposition as well as the pair of generalized gradients. The fifth paper presents the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and nonsmooth optimization problems in many practical applications. In the sixth paper, a problem concerning the scheduling of nuclear waste disposal is modeled as a nonsmooth multiobjective mixed-integer nonlinear optimization problem, and a novel method using the two-slope parameterized achievement scalarizing functions is introduced. Finally, the last paper considers binary classification of a multiple instance learning problem and formulates the learning problem as a nonconvex nonsmooth unconstrained optimization problem with a DC objective function.
Publisher: MDPI
ISBN: 3039438352
Category : Science
Languages : en
Pages : 116
Book Description
The aim of this book was to collect the most recent methods developed for NSO and its practical applications. The book contains seven papers: The first is the foreword by the Guest Editors giving a brief review of NSO and its real-life applications and acknowledging the outstanding contributions of Professor Adil Bagirov to both the theoretical and practical aspects of NSO. The second paper introduces a new and very efficient algorithm for solving uncertain unit-commitment (UC) problems. The third paper proposes a new nonsmooth version of the generalized damped Gauss–Newton method for solving nonlinear complementarity problems. In the fourth paper, the abs-linear representation of piecewise linear functions is extended to yield simultaneously their DC decomposition as well as the pair of generalized gradients. The fifth paper presents the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and nonsmooth optimization problems in many practical applications. In the sixth paper, a problem concerning the scheduling of nuclear waste disposal is modeled as a nonsmooth multiobjective mixed-integer nonlinear optimization problem, and a novel method using the two-slope parameterized achievement scalarizing functions is introduced. Finally, the last paper considers binary classification of a multiple instance learning problem and formulates the learning problem as a nonconvex nonsmooth unconstrained optimization problem with a DC objective function.
Partitional Clustering via Nonsmooth Optimization
Author: Adil M. Bagirov
Publisher: Springer Nature
ISBN: 3030378268
Category : Technology & Engineering
Languages : en
Pages : 343
Book Description
This book describes optimization models of clustering problems and clustering algorithms based on optimization techniques, including their implementation, evaluation, and applications. The book gives a comprehensive and detailed description of optimization approaches for solving clustering problems; the authors' emphasis on clustering algorithms is based on deterministic methods of optimization. The book also includes results on real-time clustering algorithms based on optimization techniques, addresses implementation issues of these clustering algorithms, and discusses new challenges arising from big data. The book is ideal for anyone teaching or learning clustering algorithms. It provides an accessible introduction to the field and it is well suited for practitioners already familiar with the basics of optimization.
Publisher: Springer Nature
ISBN: 3030378268
Category : Technology & Engineering
Languages : en
Pages : 343
Book Description
This book describes optimization models of clustering problems and clustering algorithms based on optimization techniques, including their implementation, evaluation, and applications. The book gives a comprehensive and detailed description of optimization approaches for solving clustering problems; the authors' emphasis on clustering algorithms is based on deterministic methods of optimization. The book also includes results on real-time clustering algorithms based on optimization techniques, addresses implementation issues of these clustering algorithms, and discusses new challenges arising from big data. The book is ideal for anyone teaching or learning clustering algorithms. It provides an accessible introduction to the field and it is well suited for practitioners already familiar with the basics of optimization.