Author: Amir Beck
Publisher: SIAM
ISBN: 1611973651
Category : Mathematics
Languages : en
Pages : 286
Book Description
This book provides the foundations of the theory of nonlinear optimization as well as some related algorithms and presents a variety of applications from diverse areas of applied sciences. The author combines three pillars of optimization?theoretical and algorithmic foundation, familiarity with various applications, and the ability to apply the theory and algorithms on actual problems?and rigorously and gradually builds the connection between theory, algorithms, applications, and implementation. Readers will find more than 170 theoretical, algorithmic, and numerical exercises that deepen and enhance the reader's understanding of the topics. The author includes offers several subjects not typically found in optimization books?for example, optimality conditions in sparsity-constrained optimization, hidden convexity, and total least squares. The book also offers a large number of applications discussed theoretically and algorithmically, such as circle fitting, Chebyshev center, the Fermat?Weber problem, denoising, clustering, total least squares, and orthogonal regression and theoretical and algorithmic topics demonstrated by the MATLAB? toolbox CVX and a package of m-files that is posted on the book?s web site.
Introduction to Nonlinear Optimization
Author: Amir Beck
Publisher: SIAM
ISBN: 1611973651
Category : Mathematics
Languages : en
Pages : 286
Book Description
This book provides the foundations of the theory of nonlinear optimization as well as some related algorithms and presents a variety of applications from diverse areas of applied sciences. The author combines three pillars of optimization?theoretical and algorithmic foundation, familiarity with various applications, and the ability to apply the theory and algorithms on actual problems?and rigorously and gradually builds the connection between theory, algorithms, applications, and implementation. Readers will find more than 170 theoretical, algorithmic, and numerical exercises that deepen and enhance the reader's understanding of the topics. The author includes offers several subjects not typically found in optimization books?for example, optimality conditions in sparsity-constrained optimization, hidden convexity, and total least squares. The book also offers a large number of applications discussed theoretically and algorithmically, such as circle fitting, Chebyshev center, the Fermat?Weber problem, denoising, clustering, total least squares, and orthogonal regression and theoretical and algorithmic topics demonstrated by the MATLAB? toolbox CVX and a package of m-files that is posted on the book?s web site.
Publisher: SIAM
ISBN: 1611973651
Category : Mathematics
Languages : en
Pages : 286
Book Description
This book provides the foundations of the theory of nonlinear optimization as well as some related algorithms and presents a variety of applications from diverse areas of applied sciences. The author combines three pillars of optimization?theoretical and algorithmic foundation, familiarity with various applications, and the ability to apply the theory and algorithms on actual problems?and rigorously and gradually builds the connection between theory, algorithms, applications, and implementation. Readers will find more than 170 theoretical, algorithmic, and numerical exercises that deepen and enhance the reader's understanding of the topics. The author includes offers several subjects not typically found in optimization books?for example, optimality conditions in sparsity-constrained optimization, hidden convexity, and total least squares. The book also offers a large number of applications discussed theoretically and algorithmically, such as circle fitting, Chebyshev center, the Fermat?Weber problem, denoising, clustering, total least squares, and orthogonal regression and theoretical and algorithmic topics demonstrated by the MATLAB? toolbox CVX and a package of m-files that is posted on the book?s web site.
Nonlinear Optimization
Author: Andrzej Ruszczynski
Publisher: Princeton University Press
ISBN: 1400841054
Category : Mathematics
Languages : en
Pages : 463
Book Description
Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern topics such as optimality conditions and numerical methods for problems involving nondifferentiable functions, semidefinite programming, metric regularity and stability theory of set-constrained systems, and sensitivity analysis of optimization problems. Based on a decade's worth of notes the author compiled in successfully teaching the subject, this book will help readers to understand the mathematical foundations of the modern theory and methods of nonlinear optimization and to analyze new problems, develop optimality theory for them, and choose or construct numerical solution methods. It is a must for anyone seriously interested in optimization.
Publisher: Princeton University Press
ISBN: 1400841054
Category : Mathematics
Languages : en
Pages : 463
Book Description
Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern topics such as optimality conditions and numerical methods for problems involving nondifferentiable functions, semidefinite programming, metric regularity and stability theory of set-constrained systems, and sensitivity analysis of optimization problems. Based on a decade's worth of notes the author compiled in successfully teaching the subject, this book will help readers to understand the mathematical foundations of the modern theory and methods of nonlinear optimization and to analyze new problems, develop optimality theory for them, and choose or construct numerical solution methods. It is a must for anyone seriously interested in optimization.
Introduction to Nonlinear and Global Optimization
Author: Eligius M.T. Hendrix
Publisher: Springer
ISBN: 0387886702
Category : Mathematics
Languages : en
Pages : 218
Book Description
This self-contained text provides a solid introduction to global and nonlinear optimization, providing students of mathematics and interdisciplinary sciences with a strong foundation in applied optimization techniques. The book offers a unique hands-on and critical approach to applied optimization which includes the presentation of numerous algorithms, examples, and illustrations, designed to improve the reader’s intuition and develop the analytical skills needed to identify optimization problems, classify the structure of a model, and determine whether a solution fulfills optimality conditions.
Publisher: Springer
ISBN: 0387886702
Category : Mathematics
Languages : en
Pages : 218
Book Description
This self-contained text provides a solid introduction to global and nonlinear optimization, providing students of mathematics and interdisciplinary sciences with a strong foundation in applied optimization techniques. The book offers a unique hands-on and critical approach to applied optimization which includes the presentation of numerous algorithms, examples, and illustrations, designed to improve the reader’s intuition and develop the analytical skills needed to identify optimization problems, classify the structure of a model, and determine whether a solution fulfills optimality conditions.
Nonlinear Optimization
Author: William P. Fox
Publisher: CRC Press
ISBN: 1000196925
Category : Mathematics
Languages : en
Pages : 417
Book Description
Optimization is the act of obtaining the "best" result under given circumstances. In design, construction, and maintenance of any engineering system, engineers must make technological and managerial decisions to minimize either the effort or cost required or to maximize benefits. There is no single method available for solving all optimization problems efficiently. Several optimization methods have been developed for different types of problems. The optimum-seeking methods are mathematical programming techniques (specifically, nonlinear programming techniques). Nonlinear Optimization: Models and Applications presents the concepts in several ways to foster understanding. Geometric interpretation: is used to re-enforce the concepts and to foster understanding of the mathematical procedures. The student sees that many problems can be analyzed, and approximate solutions found before analytical solutions techniques are applied. Numerical approximations: early on, the student is exposed to numerical techniques. These numerical procedures are algorithmic and iterative. Worksheets are provided in Excel, MATLAB®, and MapleTM to facilitate the procedure. Algorithms: all algorithms are provided with a step-by-step format. Examples follow the summary to illustrate its use and application. Nonlinear Optimization: Models and Applications: Emphasizes process and interpretation throughout Presents a general classification of optimization problems Addresses situations that lead to models illustrating many types of optimization problems Emphasizes model formulations Addresses a special class of problems that can be solved using only elementary calculus Emphasizes model solution and model sensitivity analysis About the author: William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. He received his Ph.D. at Clemson University and has taught at the United States Military Academy and at Francis Marion University where he was the chair of mathematics. He has written many publications, including over 20 books and over 150 journal articles. Currently, he is an adjunct professor in the Department of Mathematics at the College of William and Mary. He is the emeritus director of both the High School Mathematical Contest in Modeling and the Mathematical Contest in Modeling.
Publisher: CRC Press
ISBN: 1000196925
Category : Mathematics
Languages : en
Pages : 417
Book Description
Optimization is the act of obtaining the "best" result under given circumstances. In design, construction, and maintenance of any engineering system, engineers must make technological and managerial decisions to minimize either the effort or cost required or to maximize benefits. There is no single method available for solving all optimization problems efficiently. Several optimization methods have been developed for different types of problems. The optimum-seeking methods are mathematical programming techniques (specifically, nonlinear programming techniques). Nonlinear Optimization: Models and Applications presents the concepts in several ways to foster understanding. Geometric interpretation: is used to re-enforce the concepts and to foster understanding of the mathematical procedures. The student sees that many problems can be analyzed, and approximate solutions found before analytical solutions techniques are applied. Numerical approximations: early on, the student is exposed to numerical techniques. These numerical procedures are algorithmic and iterative. Worksheets are provided in Excel, MATLAB®, and MapleTM to facilitate the procedure. Algorithms: all algorithms are provided with a step-by-step format. Examples follow the summary to illustrate its use and application. Nonlinear Optimization: Models and Applications: Emphasizes process and interpretation throughout Presents a general classification of optimization problems Addresses situations that lead to models illustrating many types of optimization problems Emphasizes model formulations Addresses a special class of problems that can be solved using only elementary calculus Emphasizes model solution and model sensitivity analysis About the author: William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. He received his Ph.D. at Clemson University and has taught at the United States Military Academy and at Francis Marion University where he was the chair of mathematics. He has written many publications, including over 20 books and over 150 journal articles. Currently, he is an adjunct professor in the Department of Mathematics at the College of William and Mary. He is the emeritus director of both the High School Mathematical Contest in Modeling and the Mathematical Contest in Modeling.
Nonlinear Optimization
Author: H. A. Eiselt
Publisher: Springer Nature
ISBN: 3030194620
Category : Mathematics
Languages : en
Pages : 374
Book Description
This book provides a comprehensive introduction to nonlinear programming, featuring a broad range of applications and solution methods in the field of continuous optimization. It begins with a summary of classical results on unconstrained optimization, followed by a wealth of applications from a diverse mix of fields, e.g. location analysis, traffic planning, and water quality management, to name but a few. In turn, the book presents a formal description of optimality conditions, followed by an in-depth discussion of the main solution techniques. Each method is formally described, and then fully solved using a numerical example.
Publisher: Springer Nature
ISBN: 3030194620
Category : Mathematics
Languages : en
Pages : 374
Book Description
This book provides a comprehensive introduction to nonlinear programming, featuring a broad range of applications and solution methods in the field of continuous optimization. It begins with a summary of classical results on unconstrained optimization, followed by a wealth of applications from a diverse mix of fields, e.g. location analysis, traffic planning, and water quality management, to name but a few. In turn, the book presents a formal description of optimality conditions, followed by an in-depth discussion of the main solution techniques. Each method is formally described, and then fully solved using a numerical example.
Optimization Theory and Methods
Author: Wenyu Sun
Publisher: Springer Science & Business Media
ISBN: 0387249761
Category : Mathematics
Languages : en
Pages : 689
Book Description
Optimization Theory and Methods can be used as a textbook for an optimization course for graduates and senior undergraduates. It is the result of the author's teaching and research over the past decade. It describes optimization theory and several powerful methods. For most methods, the book discusses an idea’s motivation, studies the derivation, establishes the global and local convergence, describes algorithmic steps, and discusses the numerical performance.
Publisher: Springer Science & Business Media
ISBN: 0387249761
Category : Mathematics
Languages : en
Pages : 689
Book Description
Optimization Theory and Methods can be used as a textbook for an optimization course for graduates and senior undergraduates. It is the result of the author's teaching and research over the past decade. It describes optimization theory and several powerful methods. For most methods, the book discusses an idea’s motivation, studies the derivation, establishes the global and local convergence, describes algorithmic steps, and discusses the numerical performance.
Nonlinear Optimization
Author: Francisco J. Aragón
Publisher: Springer
ISBN: 3030111849
Category : Mathematics
Languages : en
Pages : 359
Book Description
This textbook on nonlinear optimization focuses on model building, real world problems, and applications of optimization models to natural and social sciences. Organized into two parts, this book may be used as a primary text for courses on convex optimization and non-convex optimization. Definitions, proofs, and numerical methods are well illustrated and all chapters contain compelling exercises. The exercises emphasize fundamental theoretical results on optimality and duality theorems, numerical methods with or without constraints, and derivative-free optimization. Selected solutions are given. Applications to theoretical results and numerical methods are highlighted to help students comprehend methods and techniques.
Publisher: Springer
ISBN: 3030111849
Category : Mathematics
Languages : en
Pages : 359
Book Description
This textbook on nonlinear optimization focuses on model building, real world problems, and applications of optimization models to natural and social sciences. Organized into two parts, this book may be used as a primary text for courses on convex optimization and non-convex optimization. Definitions, proofs, and numerical methods are well illustrated and all chapters contain compelling exercises. The exercises emphasize fundamental theoretical results on optimality and duality theorems, numerical methods with or without constraints, and derivative-free optimization. Selected solutions are given. Applications to theoretical results and numerical methods are highlighted to help students comprehend methods and techniques.
Linear and Nonlinear Optimization
Author: Igor Griva
Publisher: SIAM
ISBN: 0898716616
Category : Mathematics
Languages : en
Pages : 742
Book Description
Flexible graduate textbook that introduces the applications, theory, and algorithms of linear and nonlinear optimization in a clear succinct style, supported by numerous examples and exercises. It introduces important realistic applications and explains how optimization can address them.
Publisher: SIAM
ISBN: 0898716616
Category : Mathematics
Languages : en
Pages : 742
Book Description
Flexible graduate textbook that introduces the applications, theory, and algorithms of linear and nonlinear optimization in a clear succinct style, supported by numerous examples and exercises. It introduces important realistic applications and explains how optimization can address them.
Practical Methods of Optimization
Author: R. Fletcher
Publisher: John Wiley & Sons
ISBN: 111872318X
Category : Mathematics
Languages : en
Pages : 470
Book Description
Fully describes optimization methods that are currently most valuable in solving real-life problems. Since optimization has applications in almost every branch of science and technology, the text emphasizes their practical aspects in conjunction with the heuristics useful in making them perform more reliably and efficiently. To this end, it presents comparative numerical studies to give readers a feel for possibile applications and to illustrate the problems in assessing evidence. Also provides theoretical background which provides insights into how methods are derived. This edition offers revised coverage of basic theory and standard techniques, with updated discussions of line search methods, Newton and quasi-Newton methods, and conjugate direction methods, as well as a comprehensive treatment of restricted step or trust region methods not commonly found in the literature. Also includes recent developments in hybrid methods for nonlinear least squares; an extended discussion of linear programming, with new methods for stable updating of LU factors; and a completely new section on network programming. Chapters include computer subroutines, worked examples, and study questions.
Publisher: John Wiley & Sons
ISBN: 111872318X
Category : Mathematics
Languages : en
Pages : 470
Book Description
Fully describes optimization methods that are currently most valuable in solving real-life problems. Since optimization has applications in almost every branch of science and technology, the text emphasizes their practical aspects in conjunction with the heuristics useful in making them perform more reliably and efficiently. To this end, it presents comparative numerical studies to give readers a feel for possibile applications and to illustrate the problems in assessing evidence. Also provides theoretical background which provides insights into how methods are derived. This edition offers revised coverage of basic theory and standard techniques, with updated discussions of line search methods, Newton and quasi-Newton methods, and conjugate direction methods, as well as a comprehensive treatment of restricted step or trust region methods not commonly found in the literature. Also includes recent developments in hybrid methods for nonlinear least squares; an extended discussion of linear programming, with new methods for stable updating of LU factors; and a completely new section on network programming. Chapters include computer subroutines, worked examples, and study questions.
Introduction to Optimization Methods
Author: P. Adby
Publisher: Springer Science & Business Media
ISBN: 940095705X
Category : Science
Languages : en
Pages : 214
Book Description
During the last decade the techniques of non-linear optim ization have emerged as an important subject for study and research. The increasingly widespread application of optim ization has been stimulated by the availability of digital computers, and the necessity of using them in the investigation of large systems. This book is an introduction to non-linear methods of optimization and is suitable for undergraduate and post graduate courses in mathematics, the physical and social sciences, and engineering. The first half of the book covers the basic optimization techniques including linear search methods, steepest descent, least squares, and the Newton-Raphson method. These are described in detail, with worked numerical examples, since they form the basis from which advanced methods are derived. Since 1965 advanced methods of unconstrained and constrained optimization have been developed to utilise the computational power of the digital computer. The second half of the book describes fully important algorithms in current use such as variable metric methods for unconstrained problems and penalty function methods for constrained problems. Recent work, much of which has not yet been widely applied, is reviewed and compared with currently popular techniques under a few generic main headings. vi PREFACE Chapter I describes the optimization problem in mathemat ical form and defines the terminology used in the remainder of the book. Chapter 2 is concerned with single variable optimization. The main algorithms of both search and approximation methods are developed in detail since they are an essential part of many multi-variable methods.
Publisher: Springer Science & Business Media
ISBN: 940095705X
Category : Science
Languages : en
Pages : 214
Book Description
During the last decade the techniques of non-linear optim ization have emerged as an important subject for study and research. The increasingly widespread application of optim ization has been stimulated by the availability of digital computers, and the necessity of using them in the investigation of large systems. This book is an introduction to non-linear methods of optimization and is suitable for undergraduate and post graduate courses in mathematics, the physical and social sciences, and engineering. The first half of the book covers the basic optimization techniques including linear search methods, steepest descent, least squares, and the Newton-Raphson method. These are described in detail, with worked numerical examples, since they form the basis from which advanced methods are derived. Since 1965 advanced methods of unconstrained and constrained optimization have been developed to utilise the computational power of the digital computer. The second half of the book describes fully important algorithms in current use such as variable metric methods for unconstrained problems and penalty function methods for constrained problems. Recent work, much of which has not yet been widely applied, is reviewed and compared with currently popular techniques under a few generic main headings. vi PREFACE Chapter I describes the optimization problem in mathemat ical form and defines the terminology used in the remainder of the book. Chapter 2 is concerned with single variable optimization. The main algorithms of both search and approximation methods are developed in detail since they are an essential part of many multi-variable methods.