Higher Geometry

Higher Geometry PDF Author: Frederick Shenstone Woods
Publisher:
ISBN:
Category : Geometry, Analytic
Languages : en
Pages : 435

Get Book Here

Book Description

Higher Geometry

Higher Geometry PDF Author: Frederick Shenstone Woods
Publisher:
ISBN:
Category : Geometry, Analytic
Languages : en
Pages : 435

Get Book Here

Book Description


Introduction to Higher Geometry

Introduction to Higher Geometry PDF Author: William C. Graustein
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 0

Get Book Here

Book Description


Foundations of Geometry

Foundations of Geometry PDF Author: Gerard Venema
Publisher:
ISBN: 9780136020585
Category : Geometry
Languages : en
Pages : 0

Get Book Here

Book Description
Normal 0 false false false Foundations of Geometry, Second Edition is written to help enrich the education of all mathematics majors and facilitate a smooth transition into more advanced mathematics courses. The text also implements the latest national standards and recommendations regarding geometry for the preparation of high school mathematics teachers--and encourages students to make connections between their college courses and classes they will later teach. This text's coverage begins with Euclid's Elements, lays out a system of axioms for geometry, and then moves on to neutral geometry, Euclidian and hyperbolic geometries from an axiomatic point of view, and then non-Euclidean geometry. Good proof-writing skills are emphasized, along with a historical development of geometry. The Second Edition streamlines and reorganizes material in order to reach coverage of neutral geometry as early as possible, adds more exercises throughout, and facilitates use of the open-source software Geogebra. This text is ideal for an undergraduate course in axiomatic geometry for future high school geometry teachers, or for any student who has not yet encountered upper-level math, such as real analysis or abstract algebra. It assumes calculus and linear algebra as prerequisites.

Algebra & Geometry

Algebra & Geometry PDF Author: Mark V. Lawson
Publisher: CRC Press
ISBN: 1482246503
Category : Mathematics
Languages : en
Pages : 310

Get Book Here

Book Description
Algebra & Geometry: An Introduction to University Mathematics provides a bridge between high school and undergraduate mathematics courses on algebra and geometry. The author shows students how mathematics is more than a collection of methods by presenting important ideas and their historical origins throughout the text. He incorporates a hands-on approach to proofs and connects algebra and geometry to various applications. The text focuses on linear equations, polynomial equations, and quadratic forms. The first several chapters cover foundational topics, including the importance of proofs and properties commonly encountered when studying algebra. The remaining chapters form the mathematical core of the book. These chapters explain the solution of different kinds of algebraic equations, the nature of the solutions, and the interplay between geometry and algebra

Geometry of Higher Dimensional Algebraic Varieties

Geometry of Higher Dimensional Algebraic Varieties PDF Author: Thomas Peternell
Publisher: Birkhäuser
ISBN: 3034888937
Category : Mathematics
Languages : en
Pages : 221

Get Book Here

Book Description
This book is based on lecture notes of a seminar of the Deutsche Mathematiker Vereinigung held by the authors at Oberwolfach from April 2 to 8, 1995. It gives an introduction to the classification theory and geometry of higher dimensional complex-algebraic varieties, focusing on the tremendeous developments of the sub ject in the last 20 years. The work is in two parts, with each one preceeded by an introduction describing its contents in detail. Here, it will suffice to simply ex plain how the subject matter has been divided. Cum grano salis one might say that Part 1 (Miyaoka) is more concerned with the algebraic methods and Part 2 (Peternell) with the more analytic aspects though they have unavoidable overlaps because there is no clearcut distinction between the two methods. Specifically, Part 1 treats the deformation theory, existence and geometry of rational curves via characteristic p, while Part 2 is principally concerned with vanishing theorems and their geometric applications. Part I Geometry of Rational Curves on Varieties Yoichi Miyaoka RIMS Kyoto University 606-01 Kyoto Japan Introduction: Why Rational Curves? This note is based on a series of lectures given at the Mathematisches Forschungsin stitut at Oberwolfach, Germany, as a part of the DMV seminar "Mori Theory". The construction of minimal models was discussed by T.

Introduction to Algebraic Geometry

Introduction to Algebraic Geometry PDF Author: Serge Lang
Publisher: Courier Dover Publications
ISBN: 048683980X
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
Author Serge Lang defines algebraic geometry as the study of systems of algebraic equations in several variables and of the structure that one can give to the solutions of such equations. The study can be carried out in four ways: analytical, topological, algebraico-geometric, and arithmetic. This volume offers a rapid, concise, and self-contained introductory approach to the algebraic aspects of the third method, the algebraico-geometric. The treatment assumes only familiarity with elementary algebra up to the level of Galois theory. Starting with an opening chapter on the general theory of places, the author advances to examinations of algebraic varieties, the absolute theory of varieties, and products, projections, and correspondences. Subsequent chapters explore normal varieties, divisors and linear systems, differential forms, the theory of simple points, and algebraic groups, concluding with a focus on the Riemann-Roch theorem. All the theorems of a general nature related to the foundations of the theory of algebraic groups are featured.

Number Theory and Geometry: An Introduction to Arithmetic Geometry

Number Theory and Geometry: An Introduction to Arithmetic Geometry PDF Author: Álvaro Lozano-Robledo
Publisher: American Mathematical Soc.
ISBN: 147045016X
Category : Mathematics
Languages : en
Pages : 506

Get Book Here

Book Description
Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.

Symmetry, Shape and Space

Symmetry, Shape and Space PDF Author: L.Christine Kinsey
Publisher: Springer Science & Business Media
ISBN: 9781930190092
Category : Mathematics
Languages : en
Pages : 524

Get Book Here

Book Description
This book will appeal to at least three groups of readers: prospective high school teachers, liberal arts students, and parents whose children are studying high school or college math. It is modern in its selection of topics, and in the learning models used by the authors. The book covers some exciting but non-traditional topics from the subject area of geometry. It is also intended for undergraduates and tries to engage their interest in mathematics. Many innovative pedagogical modes are used throughout.

Introduction to Geometry

Introduction to Geometry PDF Author: Richard Rusczyk
Publisher: Aops Incorporated
ISBN: 9781934124086
Category : Juvenile Nonfiction
Languages : en
Pages : 557

Get Book Here

Book Description


Geometry with an Introduction to Cosmic Topology

Geometry with an Introduction to Cosmic Topology PDF Author: Michael P. Hitchman
Publisher: Jones & Bartlett Learning
ISBN: 0763754579
Category : Mathematics
Languages : en
Pages : 255

Get Book Here

Book Description
The content of Geometry with an Introduction to Cosmic Topology is motivated by questions that have ignited the imagination of stargazers since antiquity. What is the shape of the universe? Does the universe have and edge? Is it infinitely big? Dr. Hitchman aims to clarify this fascinating area of mathematics. This non-Euclidean geometry text is organized intothree natural parts. Chapter 1 provides an overview including a brief history of Geometry, Surfaces, and reasons to study Non-Euclidean Geometry. Chapters 2-7 contain the core mathematical content of the text, following the ErlangenProgram, which develops geometry in terms of a space and a group of transformations on that space. Finally chapters 1 and 8 introduce (chapter 1) and explore (chapter 8) the topic of cosmic topology through the geometry learned in the preceding chapters.