Author: Muneo Hori
Publisher: World Scientific
ISBN: 178634453X
Category : Technology & Engineering
Languages : en
Pages : 452
Book Description
This book provides rigorous foundations of applying modern computational mechanics to earthquake engineering. The scope covers the numerical analysis of earthquake wave propagation processes and the faulting processes, and also presents the most advanced numerical simulations of earthquake hazards and disasters that can take place in an urban area.Two new chapters included are advanced topics on high performance computing and for constructing an analysis model.This is the first book in earthquake engineering that explains the application of modern numerical computation (which includes high performance computing) to various engineering seismology problems.
Introduction To Computational Earthquake Engineering (Third Edition)
Author: Muneo Hori
Publisher: World Scientific
ISBN: 178634453X
Category : Technology & Engineering
Languages : en
Pages : 452
Book Description
This book provides rigorous foundations of applying modern computational mechanics to earthquake engineering. The scope covers the numerical analysis of earthquake wave propagation processes and the faulting processes, and also presents the most advanced numerical simulations of earthquake hazards and disasters that can take place in an urban area.Two new chapters included are advanced topics on high performance computing and for constructing an analysis model.This is the first book in earthquake engineering that explains the application of modern numerical computation (which includes high performance computing) to various engineering seismology problems.
Publisher: World Scientific
ISBN: 178634453X
Category : Technology & Engineering
Languages : en
Pages : 452
Book Description
This book provides rigorous foundations of applying modern computational mechanics to earthquake engineering. The scope covers the numerical analysis of earthquake wave propagation processes and the faulting processes, and also presents the most advanced numerical simulations of earthquake hazards and disasters that can take place in an urban area.Two new chapters included are advanced topics on high performance computing and for constructing an analysis model.This is the first book in earthquake engineering that explains the application of modern numerical computation (which includes high performance computing) to various engineering seismology problems.
Introduction To Computational Earthquake Engineering (2nd Edition)
Author: Muneo Hori
Publisher: World Scientific
ISBN: 1908978414
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
Introduction to Computational Earthquake Engineering covers solid continuum mechanics, finite element method and stochastic modeling comprehensively, with the second and third chapters explaining the numerical simulation of strong ground motion and faulting, respectively. Stochastic modeling is used for uncertain underground structures, and advanced analytical methods for linear and non-linear stochastic models are presented. The verification of these methods by comparing the simulation results with observed data is then presented, and examples of numerical simulations which apply these methods to practical problems are generously provided. Furthermore three advanced topics of computational earthquake engineering are covered, detailing examples of applying computational science technology to earthquake engineering problems.
Publisher: World Scientific
ISBN: 1908978414
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
Introduction to Computational Earthquake Engineering covers solid continuum mechanics, finite element method and stochastic modeling comprehensively, with the second and third chapters explaining the numerical simulation of strong ground motion and faulting, respectively. Stochastic modeling is used for uncertain underground structures, and advanced analytical methods for linear and non-linear stochastic models are presented. The verification of these methods by comparing the simulation results with observed data is then presented, and examples of numerical simulations which apply these methods to practical problems are generously provided. Furthermore three advanced topics of computational earthquake engineering are covered, detailing examples of applying computational science technology to earthquake engineering problems.
2019 Rock Dynamics Summit
Author: Ömer Aydan
Publisher: CRC Press
ISBN: 1000566986
Category : Technology & Engineering
Languages : en
Pages : 820
Book Description
Rock dynamics has become one of the most important topics in the field of rock mechanics and rock engineering, and involves a wide variety of topics, from earthquake engineering, blasting, impacts, failure of rock engineering structures as well as the occurrence and prediction of earthquakes, induced seismicity, rock bursts to non-destructive testing and explorations. Rock dynamics has wide applications in civil and infrastructural, resources and energy, geological and environmental engineering, geothermal energy, and earthquake hazard management, and has become one of the most topical areas. 2019 Rock Dynamics Summit contains 8 keynote addresses and 128 regular full papers that were presented at the 2019 Rock Dynamics Summit (2019 RDS, Okinawa, Japan, 7-11 May 2019), a specialized conference jointly organized by the Rock Dynamics Committee of the Japanese Society of Civil Engineers (JSCE-RDC), the Japanese Society for Rock Mechanics (JSRM), and which was supported by the International Society for Rock Mechanics and Rock Engineering (ISRM) and the Turkish National Society for Rock Mechanics (TNSRM). The contributions cover a wide range of topics on the dynamic behavior of rock and rock masses and scientific and engineering applications, and include: - Laboratory tests on Dynamic Responses of Rocks and Rock Masses / Fracturing of Rocks and Associated Strong Motions - Estimation Procedures and Numerical Techniques of Strong Motions Associated with the Rupture of Earth’s Crust and Some Strong Motion - Dynamic Response and Stability of Rock Foundations, Underground Excavations in Rock, Rock Slopes Dynamic Responses and Stability of Stone Masonry Historical Structures and Monuments - Induced Seismicity - Dynamic Simulation of Loading and Excavation - Blasting and machinery induced vibrations - Rockburst, Outburst, Impacts - Nondestructive Testing Using Shock Waves - Case Histories of Failure Phenomenon in Rock Engineering 2019 Rock Dynamics Summit contains the state-of-the-art in rock dynamics, and will be invaluable to professionals and academics interested in the latest advances in new techniques for experiments, analytical and numerical modelling as well as monitoring in dynamics of rocks and rock engineering structures.
Publisher: CRC Press
ISBN: 1000566986
Category : Technology & Engineering
Languages : en
Pages : 820
Book Description
Rock dynamics has become one of the most important topics in the field of rock mechanics and rock engineering, and involves a wide variety of topics, from earthquake engineering, blasting, impacts, failure of rock engineering structures as well as the occurrence and prediction of earthquakes, induced seismicity, rock bursts to non-destructive testing and explorations. Rock dynamics has wide applications in civil and infrastructural, resources and energy, geological and environmental engineering, geothermal energy, and earthquake hazard management, and has become one of the most topical areas. 2019 Rock Dynamics Summit contains 8 keynote addresses and 128 regular full papers that were presented at the 2019 Rock Dynamics Summit (2019 RDS, Okinawa, Japan, 7-11 May 2019), a specialized conference jointly organized by the Rock Dynamics Committee of the Japanese Society of Civil Engineers (JSCE-RDC), the Japanese Society for Rock Mechanics (JSRM), and which was supported by the International Society for Rock Mechanics and Rock Engineering (ISRM) and the Turkish National Society for Rock Mechanics (TNSRM). The contributions cover a wide range of topics on the dynamic behavior of rock and rock masses and scientific and engineering applications, and include: - Laboratory tests on Dynamic Responses of Rocks and Rock Masses / Fracturing of Rocks and Associated Strong Motions - Estimation Procedures and Numerical Techniques of Strong Motions Associated with the Rupture of Earth’s Crust and Some Strong Motion - Dynamic Response and Stability of Rock Foundations, Underground Excavations in Rock, Rock Slopes Dynamic Responses and Stability of Stone Masonry Historical Structures and Monuments - Induced Seismicity - Dynamic Simulation of Loading and Excavation - Blasting and machinery induced vibrations - Rockburst, Outburst, Impacts - Nondestructive Testing Using Shock Waves - Case Histories of Failure Phenomenon in Rock Engineering 2019 Rock Dynamics Summit contains the state-of-the-art in rock dynamics, and will be invaluable to professionals and academics interested in the latest advances in new techniques for experiments, analytical and numerical modelling as well as monitoring in dynamics of rocks and rock engineering structures.
Integrated Earthquake Simulation
Author: M. Hori
Publisher: CRC Press
ISBN: 1000615774
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
Integrated earthquake simulation (IES) is a new method for evaluating earthquake hazards and disasters induced in cities and urban areas. It utilises a sequence of numerical simulations of such aspects as earthquake wave propagation, ground motion amplification, structural seismic response, and mass evacuation. This book covers the basics of numerical analysis methods of solving wave equations, analyzing structural responses, and developing agent models for mass evaluation, which are implemented in IES. IES makes use of Monte-Carlo simulation, which takes account of the effects of uncertainties related to earthquake scenarios and the modeling of structures both above and below ground, and facilitates a better estimate of overall earthquake and disaster hazard. It also presents the recent achievement of enhancing IES with high-performance computing capability that can make use of automated models which employ various numerical analysis methods. Detailed examples of IES for the Tokyo Metropolis Earthquake and the Nankai Trough Earthquake are given, which use large scale analysis models of actual cities and urban areas.
Publisher: CRC Press
ISBN: 1000615774
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
Integrated earthquake simulation (IES) is a new method for evaluating earthquake hazards and disasters induced in cities and urban areas. It utilises a sequence of numerical simulations of such aspects as earthquake wave propagation, ground motion amplification, structural seismic response, and mass evacuation. This book covers the basics of numerical analysis methods of solving wave equations, analyzing structural responses, and developing agent models for mass evaluation, which are implemented in IES. IES makes use of Monte-Carlo simulation, which takes account of the effects of uncertainties related to earthquake scenarios and the modeling of structures both above and below ground, and facilitates a better estimate of overall earthquake and disaster hazard. It also presents the recent achievement of enhancing IES with high-performance computing capability that can make use of automated models which employ various numerical analysis methods. Detailed examples of IES for the Tokyo Metropolis Earthquake and the Nankai Trough Earthquake are given, which use large scale analysis models of actual cities and urban areas.
Application Of High-performance Computing To Earthquake-related Problems
Author: Muneo Hori
Publisher: World Scientific
ISBN: 1800614640
Category : Computers
Languages : en
Pages : 647
Book Description
With the continued improvements in computing power and digital information availability, we are witnessing the increasing use of high-performance computers to enhance simulations for the forecasting of hazards, disasters, and responses. This major reference work summarizes the theories, analysis methods, and computational results of various earthquake simulations by the use of supercomputers. It covers simulations in the fields of seismology, physical geology, earthquake engineering — specifically the seismic response of structures — and the socioeconomic impact of post-earthquake recovery on cities and societies. Individual chapters address phenomena such as earthquake cycles and plate boundary behavior, tsunamis, structural response to strong ground motion, and post-disaster traffic flow and economic activity. The methods used for these simulations include finite element methods, discrete element methods, smoothed particle hydrodynamics, and multi-agent models, among others.The simulations included in this book provide an effective bird's-eye view of cutting-edge simulations enhanced with high-performance computing for earthquake occurrence, earthquake damage, and recovery from the damage, combining three of the major fields of earthquake studies: earth science, earthquake engineering, and disaster-mitigation-related social science. The book is suitable for advanced undergraduates, graduates, and researchers in these fields.
Publisher: World Scientific
ISBN: 1800614640
Category : Computers
Languages : en
Pages : 647
Book Description
With the continued improvements in computing power and digital information availability, we are witnessing the increasing use of high-performance computers to enhance simulations for the forecasting of hazards, disasters, and responses. This major reference work summarizes the theories, analysis methods, and computational results of various earthquake simulations by the use of supercomputers. It covers simulations in the fields of seismology, physical geology, earthquake engineering — specifically the seismic response of structures — and the socioeconomic impact of post-earthquake recovery on cities and societies. Individual chapters address phenomena such as earthquake cycles and plate boundary behavior, tsunamis, structural response to strong ground motion, and post-disaster traffic flow and economic activity. The methods used for these simulations include finite element methods, discrete element methods, smoothed particle hydrodynamics, and multi-agent models, among others.The simulations included in this book provide an effective bird's-eye view of cutting-edge simulations enhanced with high-performance computing for earthquake occurrence, earthquake damage, and recovery from the damage, combining three of the major fields of earthquake studies: earth science, earthquake engineering, and disaster-mitigation-related social science. The book is suitable for advanced undergraduates, graduates, and researchers in these fields.
Introduction to Computational Earthquake Engineering
Author: Muneo Hori
Publisher: Imperial College Press
ISBN: 1860946208
Category : Science
Languages : en
Pages : 344
Book Description
This book introduces new research topics in earthquake engineering through the application of computational mechanics and computer science. The topics covered discuss the evaluation of earthquake hazards such as strong ground motion and faulting through applying advanced numerical analysis methods, useful for estimating earthquake disasters. These methods, based on recent progress in solid continuum mechanics and computational mechanics, are summarized comprehensively for graduate students and researchers in earthquake engineering. The coverage includes stochastic modeling as well as several advanced computational earthquake engineering topics. Contents: Preliminaries: Solid Continuum Mechanics; Finite Element Method; Stochastic Modeling; Strong Ground Motion: The Wave Equation for Solids; Analysis of Strong Ground Motion; Simulation of Strong Ground Motion; Faulting: Elasto-Plasticity and Fracture Mechanics; Analysis of Faulting; Simulation of Faulting; BEM Simulation of Faulting; Advanced Topics: Integrated Earthquake Simulation; Unified Visualization of Earthquake Simulation; Standardization of Earthquake Resistant Design; Appendices: Earthquake Mechanisms; Analytical Mechanics; Numerical Techniques of Solving Wave Equation; Unified Modeling Language. Key Features Includes a detailed treatment of modeling of uncertain ground structures, such as stochastic modeling Explains several key numerical algorithms and techniques for solving large-scale, non-linear and dynamic problems Presents applications of methods for simulating actual strong ground motion and faulting Readership: Graduate students and researchers in earthquake engineering; researchers in computational mechanics and computer science.
Publisher: Imperial College Press
ISBN: 1860946208
Category : Science
Languages : en
Pages : 344
Book Description
This book introduces new research topics in earthquake engineering through the application of computational mechanics and computer science. The topics covered discuss the evaluation of earthquake hazards such as strong ground motion and faulting through applying advanced numerical analysis methods, useful for estimating earthquake disasters. These methods, based on recent progress in solid continuum mechanics and computational mechanics, are summarized comprehensively for graduate students and researchers in earthquake engineering. The coverage includes stochastic modeling as well as several advanced computational earthquake engineering topics. Contents: Preliminaries: Solid Continuum Mechanics; Finite Element Method; Stochastic Modeling; Strong Ground Motion: The Wave Equation for Solids; Analysis of Strong Ground Motion; Simulation of Strong Ground Motion; Faulting: Elasto-Plasticity and Fracture Mechanics; Analysis of Faulting; Simulation of Faulting; BEM Simulation of Faulting; Advanced Topics: Integrated Earthquake Simulation; Unified Visualization of Earthquake Simulation; Standardization of Earthquake Resistant Design; Appendices: Earthquake Mechanisms; Analytical Mechanics; Numerical Techniques of Solving Wave Equation; Unified Modeling Language. Key Features Includes a detailed treatment of modeling of uncertain ground structures, such as stochastic modeling Explains several key numerical algorithms and techniques for solving large-scale, non-linear and dynamic problems Presents applications of methods for simulating actual strong ground motion and faulting Readership: Graduate students and researchers in earthquake engineering; researchers in computational mechanics and computer science.
Computational Structural Dynamics and Earthquake Engineering
Author: Manolis Papadrakakis
Publisher: CRC Press
ISBN: 020388163X
Category : Technology & Engineering
Languages : en
Pages : 672
Book Description
The increasing necessity to solve complex problems in Structural Dynamics and Earthquake Engineering requires the development of new ideas, innovative methods and numerical tools for providing accurate numerical solutions in affordable computing times. This book presents the latest scientific developments in Computational Dynamics, Stochastic Dynam
Publisher: CRC Press
ISBN: 020388163X
Category : Technology & Engineering
Languages : en
Pages : 672
Book Description
The increasing necessity to solve complex problems in Structural Dynamics and Earthquake Engineering requires the development of new ideas, innovative methods and numerical tools for providing accurate numerical solutions in affordable computing times. This book presents the latest scientific developments in Computational Dynamics, Stochastic Dynam
Dynamics of Structures, Third Edition
Author: J. Humar
Publisher: CRC Press
ISBN: 0415620864
Category : Technology & Engineering
Languages : en
Pages : 1058
Book Description
This major textbook provides comprehensive coverage of the analytical tools required to determine the dynamic response of structures. The topics covered include: formulation of the equations of motion for single- as well as multi-degree-of-freedom discrete systems using the principles of both vector mechanics and analytical mechanics; free vibration response; determination of frequencies and mode shapes; forced vibration response to harmonic and general forcing functions; dynamic analysis of continuous systems;and wave propagation analysis. The key assets of the book include comprehensive coverage of both the traditional and state-of-the-art numerical techniques of response analysis, such as the analysis by numerical integration of the equations of motion and analysis through frequency domain. The large number of illustrative examples and exercise problems are of great assistance in improving clarity and enhancing reader comprehension. The text aims to benefit students and engineers in the civil, mechanical, and aerospace sectors.
Publisher: CRC Press
ISBN: 0415620864
Category : Technology & Engineering
Languages : en
Pages : 1058
Book Description
This major textbook provides comprehensive coverage of the analytical tools required to determine the dynamic response of structures. The topics covered include: formulation of the equations of motion for single- as well as multi-degree-of-freedom discrete systems using the principles of both vector mechanics and analytical mechanics; free vibration response; determination of frequencies and mode shapes; forced vibration response to harmonic and general forcing functions; dynamic analysis of continuous systems;and wave propagation analysis. The key assets of the book include comprehensive coverage of both the traditional and state-of-the-art numerical techniques of response analysis, such as the analysis by numerical integration of the equations of motion and analysis through frequency domain. The large number of illustrative examples and exercise problems are of great assistance in improving clarity and enhancing reader comprehension. The text aims to benefit students and engineers in the civil, mechanical, and aerospace sectors.
Vibration Problems ICOVP 2011 : the 10th International Conference on Vibration Problems
Author:
Publisher: ICOVP 2011 Supplement
ISBN: 8073727595
Category :
Languages : en
Pages : 550
Book Description
Publisher: ICOVP 2011 Supplement
ISBN: 8073727595
Category :
Languages : en
Pages : 550
Book Description
Introduction to Computational Science
Author: Angela B. Shiflet
Publisher: Princeton University Press
ISBN: 140085055X
Category : Computers
Languages : en
Pages : 857
Book Description
The essential introduction to computational science—now fully updated and expanded Computational science is an exciting new field at the intersection of the sciences, computer science, and mathematics because much scientific investigation now involves computing as well as theory and experiment. This textbook provides students with a versatile and accessible introduction to the subject. It assumes only a background in high school algebra, enables instructors to follow tailored pathways through the material, and is the only textbook of its kind designed specifically for an introductory course in the computational science and engineering curriculum. While the text itself is generic, an accompanying website offers tutorials and files in a variety of software packages. This fully updated and expanded edition features two new chapters on agent-based simulations and modeling with matrices, ten new project modules, and an additional module on diffusion. Besides increased treatment of high-performance computing and its applications, the book also includes additional quick review questions with answers, exercises, and individual and team projects. The only introductory textbook of its kind—now fully updated and expanded Features two new chapters on agent-based simulations and modeling with matrices Increased coverage of high-performance computing and its applications Includes additional modules, review questions, exercises, and projects An online instructor's manual with exercise answers, selected project solutions, and a test bank and solutions (available only to professors) An online illustration package is available to professors
Publisher: Princeton University Press
ISBN: 140085055X
Category : Computers
Languages : en
Pages : 857
Book Description
The essential introduction to computational science—now fully updated and expanded Computational science is an exciting new field at the intersection of the sciences, computer science, and mathematics because much scientific investigation now involves computing as well as theory and experiment. This textbook provides students with a versatile and accessible introduction to the subject. It assumes only a background in high school algebra, enables instructors to follow tailored pathways through the material, and is the only textbook of its kind designed specifically for an introductory course in the computational science and engineering curriculum. While the text itself is generic, an accompanying website offers tutorials and files in a variety of software packages. This fully updated and expanded edition features two new chapters on agent-based simulations and modeling with matrices, ten new project modules, and an additional module on diffusion. Besides increased treatment of high-performance computing and its applications, the book also includes additional quick review questions with answers, exercises, and individual and team projects. The only introductory textbook of its kind—now fully updated and expanded Features two new chapters on agent-based simulations and modeling with matrices Increased coverage of high-performance computing and its applications Includes additional modules, review questions, exercises, and projects An online instructor's manual with exercise answers, selected project solutions, and a test bank and solutions (available only to professors) An online illustration package is available to professors