Author: Ramon E. Moore
Publisher: SIAM
ISBN: 089871771X
Category : Mathematics
Languages : en
Pages : 223
Book Description
An update on the author's previous books, this introduction to interval analysis provides an introduction to INTLAB, a high-quality, comprehensive MATLAB toolbox for interval computations, making this the first interval analysis book that does with INTLAB what general numerical analysis texts do with MATLAB.
Introduction to Interval Analysis
Introduction to Analysis
Author: Edward Gaughan
Publisher: American Mathematical Soc.
ISBN: 0821847872
Category : Mathematics
Languages : en
Pages : 258
Book Description
"The topics are quite standard: convergence of sequences, limits of functions, continuity, differentiation, the Riemann integral, infinite series, power series, and convergence of sequences of functions. Many examples are given to illustrate the theory, and exercises at the end of each chapter are keyed to each section."--pub. desc.
Publisher: American Mathematical Soc.
ISBN: 0821847872
Category : Mathematics
Languages : en
Pages : 258
Book Description
"The topics are quite standard: convergence of sequences, limits of functions, continuity, differentiation, the Riemann integral, infinite series, power series, and convergence of sequences of functions. Many examples are given to illustrate the theory, and exercises at the end of each chapter are keyed to each section."--pub. desc.
An Application of the Notions of General Analysis to a Problem of the Calculus of Variations
Author: Oskar Bolza
Publisher: BoD – Books on Demand
ISBN: 3846031453
Category : Mathematics
Languages : en
Pages : 14
Book Description
Reprint of the original, first published in 1910.
Publisher: BoD – Books on Demand
ISBN: 3846031453
Category : Mathematics
Languages : en
Pages : 14
Book Description
Reprint of the original, first published in 1910.
An Introduction to Classical Real Analysis
Author: Karl R. Stromberg
Publisher: American Mathematical Soc.
ISBN: 1470425440
Category : Mathematics
Languages : en
Pages : 594
Book Description
This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. One significant way in which this book differs from other texts at this level is that the integral which is first mentioned is the Lebesgue integral on the real line. There are at least three good reasons for doing this. First, this approach is no more difficult to understand than is the traditional theory of the Riemann integral. Second, the readers will profit from acquiring a thorough understanding of Lebesgue integration on Euclidean spaces before they enter into a study of abstract measure theory. Third, this is the integral that is most useful to current applied mathematicians and theoretical scientists, and is essential for any serious work with trigonometric series. The exercise sets are a particularly attractive feature of this book. A great many of the exercises are projects of many parts which, when completed in the order given, lead the student by easy stages to important and interesting results. Many of the exercises are supplied with copious hints. This new printing contains a large number of corrections and a short author biography as well as a list of selected publications of the author. This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. - See more at: http://bookstore.ams.org/CHEL-376-H/#sthash.wHQ1vpdk.dpuf This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. One significant way in which this book differs from other texts at this level is that the integral which is first mentioned is the Lebesgue integral on the real line. There are at least three good reasons for doing this. First, this approach is no more difficult to understand than is the traditional theory of the Riemann integral. Second, the readers will profit from acquiring a thorough understanding of Lebesgue integration on Euclidean spaces before they enter into a study of abstract measure theory. Third, this is the integral that is most useful to current applied mathematicians and theoretical scientists, and is essential for any serious work with trigonometric series. The exercise sets are a particularly attractive feature of this book. A great many of the exercises are projects of many parts which, when completed in the order given, lead the student by easy stages to important and interesting results. Many of the exercises are supplied with copious hints. This new printing contains a large number of corrections and a short author biography as well as a list of selected publications of the author. This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. - See more at: http://bookstore.ams.org/CHEL-376-H/#sthash.wHQ1vpdk.dpuf
Publisher: American Mathematical Soc.
ISBN: 1470425440
Category : Mathematics
Languages : en
Pages : 594
Book Description
This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. One significant way in which this book differs from other texts at this level is that the integral which is first mentioned is the Lebesgue integral on the real line. There are at least three good reasons for doing this. First, this approach is no more difficult to understand than is the traditional theory of the Riemann integral. Second, the readers will profit from acquiring a thorough understanding of Lebesgue integration on Euclidean spaces before they enter into a study of abstract measure theory. Third, this is the integral that is most useful to current applied mathematicians and theoretical scientists, and is essential for any serious work with trigonometric series. The exercise sets are a particularly attractive feature of this book. A great many of the exercises are projects of many parts which, when completed in the order given, lead the student by easy stages to important and interesting results. Many of the exercises are supplied with copious hints. This new printing contains a large number of corrections and a short author biography as well as a list of selected publications of the author. This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. - See more at: http://bookstore.ams.org/CHEL-376-H/#sthash.wHQ1vpdk.dpuf This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. One significant way in which this book differs from other texts at this level is that the integral which is first mentioned is the Lebesgue integral on the real line. There are at least three good reasons for doing this. First, this approach is no more difficult to understand than is the traditional theory of the Riemann integral. Second, the readers will profit from acquiring a thorough understanding of Lebesgue integration on Euclidean spaces before they enter into a study of abstract measure theory. Third, this is the integral that is most useful to current applied mathematicians and theoretical scientists, and is essential for any serious work with trigonometric series. The exercise sets are a particularly attractive feature of this book. A great many of the exercises are projects of many parts which, when completed in the order given, lead the student by easy stages to important and interesting results. Many of the exercises are supplied with copious hints. This new printing contains a large number of corrections and a short author biography as well as a list of selected publications of the author. This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. - See more at: http://bookstore.ams.org/CHEL-376-H/#sthash.wHQ1vpdk.dpuf
Introduction to Analysis
Author: Maxwell Rosenlicht
Publisher: Courier Corporation
ISBN: 0486134687
Category : Mathematics
Languages : en
Pages : 270
Book Description
Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. 1968 edition.
Publisher: Courier Corporation
ISBN: 0486134687
Category : Mathematics
Languages : en
Pages : 270
Book Description
Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. 1968 edition.
Generalized Limits in General Analysis
Author: Charles Napoleon Moore
Publisher:
ISBN:
Category : Calculus
Languages : en
Pages : 12
Book Description
Publisher:
ISBN:
Category : Calculus
Languages : en
Pages : 12
Book Description
Annual Register
Author: University of Chicago
Publisher:
ISBN:
Category :
Languages : en
Pages : 822
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 822
Book Description
Introduction to Global Analysis
Author: Donald W. Kahn
Publisher: Courier Corporation
ISBN: 0486152294
Category : Mathematics
Languages : en
Pages : 20
Book Description
This text introduces the methods of mathematical analysis as applied to manifolds, including the roles of differentiation and integration, infinite dimensions, Morse theory, Lie groups, and dynamical systems. 1980 edition.
Publisher: Courier Corporation
ISBN: 0486152294
Category : Mathematics
Languages : en
Pages : 20
Book Description
This text introduces the methods of mathematical analysis as applied to manifolds, including the roles of differentiation and integration, infinite dimensions, Morse theory, Lie groups, and dynamical systems. 1980 edition.
Circular of Information
Author: University of Chicago
Publisher:
ISBN:
Category :
Languages : en
Pages : 292
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 292
Book Description
A Semicentennial History of the American Mathematical Society, 1888-1938
Author: Raymond Clare Archibald
Publisher: American Mathematical Soc.
ISBN: 9780821896778
Category : Mathematics
Languages : en
Pages : 344
Book Description
This volume outlines the history of the AMS in its first fifty years. To download free chapters of this book, click here.
Publisher: American Mathematical Soc.
ISBN: 9780821896778
Category : Mathematics
Languages : en
Pages : 344
Book Description
This volume outlines the history of the AMS in its first fifty years. To download free chapters of this book, click here.