Author: Laura Ruetsche
Publisher: Oxford University Press
ISBN: 0191617377
Category : Science
Languages : en
Pages : 400
Book Description
Traditionally, philosophers of quantum mechanics have addressed exceedingly simple systems: a pair of electrons in an entangled state, or an atom and a cat in Dr. Schrödinger's diabolical device. But recently, much more complicated systems, such as quantum fields and the infinite systems at the thermodynamic limit of quantum statistical mechanics, have attracted, and repaid, philosophical attention. Interpreting Quantum Theories has three entangled aims. The first is to guide those familiar with the philosophy of ordinary QM into the philosophy of 'QM infinity', by presenting accessible introductions to relevant technical notions and the foundational questions they frame. The second aim is to develop and defend answers to some of those questions. Does quantum field theory demand or deserve a particle ontology? How (if at all) are different states of broken symmetry different? And what is the proper role of idealizations in working physics? The third aim is to highlight ties between the foundational investigation of QM infinity and philosophy more broadly construed, in particular by using the interpretive problems discussed to motivate new ways to think about the nature of physical possibility and the problem of scientific realism.
Interpreting Quantum Theories
Author: Laura Ruetsche
Publisher: Oxford University Press
ISBN: 0191617377
Category : Science
Languages : en
Pages : 400
Book Description
Traditionally, philosophers of quantum mechanics have addressed exceedingly simple systems: a pair of electrons in an entangled state, or an atom and a cat in Dr. Schrödinger's diabolical device. But recently, much more complicated systems, such as quantum fields and the infinite systems at the thermodynamic limit of quantum statistical mechanics, have attracted, and repaid, philosophical attention. Interpreting Quantum Theories has three entangled aims. The first is to guide those familiar with the philosophy of ordinary QM into the philosophy of 'QM infinity', by presenting accessible introductions to relevant technical notions and the foundational questions they frame. The second aim is to develop and defend answers to some of those questions. Does quantum field theory demand or deserve a particle ontology? How (if at all) are different states of broken symmetry different? And what is the proper role of idealizations in working physics? The third aim is to highlight ties between the foundational investigation of QM infinity and philosophy more broadly construed, in particular by using the interpretive problems discussed to motivate new ways to think about the nature of physical possibility and the problem of scientific realism.
Publisher: Oxford University Press
ISBN: 0191617377
Category : Science
Languages : en
Pages : 400
Book Description
Traditionally, philosophers of quantum mechanics have addressed exceedingly simple systems: a pair of electrons in an entangled state, or an atom and a cat in Dr. Schrödinger's diabolical device. But recently, much more complicated systems, such as quantum fields and the infinite systems at the thermodynamic limit of quantum statistical mechanics, have attracted, and repaid, philosophical attention. Interpreting Quantum Theories has three entangled aims. The first is to guide those familiar with the philosophy of ordinary QM into the philosophy of 'QM infinity', by presenting accessible introductions to relevant technical notions and the foundational questions they frame. The second aim is to develop and defend answers to some of those questions. Does quantum field theory demand or deserve a particle ontology? How (if at all) are different states of broken symmetry different? And what is the proper role of idealizations in working physics? The third aim is to highlight ties between the foundational investigation of QM infinity and philosophy more broadly construed, in particular by using the interpretive problems discussed to motivate new ways to think about the nature of physical possibility and the problem of scientific realism.
The Emergent Multiverse
Author: David Wallace
Publisher: OUP Oxford
ISBN: 0191057398
Category : Philosophy
Languages : en
Pages : 547
Book Description
The Emergent Multiverse presents a striking new account of the 'many worlds' approach to quantum theory. The point of science, it is generally accepted, is to tell us how the world works and what it is like. But quantum theory seems to fail to do this: taken literally as a theory of the world, it seems to make crazy claims: particles are in two places at once; cats are alive and dead at the same time. So physicists and philosophers have often been led either to give up on the idea that quantum theory describes reality, or to modify or augment the theory. The Everett interpretation of quantum mechanics takes the apparent craziness seriously, and asks, 'what would it be like if particles really were in two places at once, if cats really were alive and dead at the same time'? The answer, it turns out, is that if the world were like that—if it were as quantum theory claims—it would be a world that, at the macroscopic level, was constantly branching into copies—hence the more sensationalist name for the Everett interpretation, the 'many worlds theory'. But really, the interpretation is not sensationalist at all: it simply takes quantum theory seriously, literally, as a description of the world. Once dismissed as absurd, it is now accepted by many physicists as the best way to make coherent sense of quantum theory. David Wallace offers a clear and up-to-date survey of work on the Everett interpretation in physics and in philosophy of science, and at the same time provides a self-contained and thoroughly modern account of it—an account which is accessible to readers who have previously studied quantum theory at undergraduate level, and which will shape the future direction of research by leading experts in the field.
Publisher: OUP Oxford
ISBN: 0191057398
Category : Philosophy
Languages : en
Pages : 547
Book Description
The Emergent Multiverse presents a striking new account of the 'many worlds' approach to quantum theory. The point of science, it is generally accepted, is to tell us how the world works and what it is like. But quantum theory seems to fail to do this: taken literally as a theory of the world, it seems to make crazy claims: particles are in two places at once; cats are alive and dead at the same time. So physicists and philosophers have often been led either to give up on the idea that quantum theory describes reality, or to modify or augment the theory. The Everett interpretation of quantum mechanics takes the apparent craziness seriously, and asks, 'what would it be like if particles really were in two places at once, if cats really were alive and dead at the same time'? The answer, it turns out, is that if the world were like that—if it were as quantum theory claims—it would be a world that, at the macroscopic level, was constantly branching into copies—hence the more sensationalist name for the Everett interpretation, the 'many worlds theory'. But really, the interpretation is not sensationalist at all: it simply takes quantum theory seriously, literally, as a description of the world. Once dismissed as absurd, it is now accepted by many physicists as the best way to make coherent sense of quantum theory. David Wallace offers a clear and up-to-date survey of work on the Everett interpretation in physics and in philosophy of science, and at the same time provides a self-contained and thoroughly modern account of it—an account which is accessible to readers who have previously studied quantum theory at undergraduate level, and which will shape the future direction of research by leading experts in the field.
The Transactional Interpretation of Quantum Mechanics
Author: Ruth E. Kastner
Publisher: Cambridge University Press
ISBN: 1108830447
Category : Science
Languages : en
Pages : 261
Book Description
Provides a comprehensive exposition of the transactional interpretation of quantum mechanics and its compatibility with relativity.
Publisher: Cambridge University Press
ISBN: 1108830447
Category : Science
Languages : en
Pages : 261
Book Description
Provides a comprehensive exposition of the transactional interpretation of quantum mechanics and its compatibility with relativity.
Quantum Information Theory and the Foundations of Quantum Mechanics
Author: Christopher G. Timpson
Publisher: Oxford Philosophical Monograph
ISBN: 0199296464
Category : Computers
Languages : en
Pages : 308
Book Description
Christopher G. Timpson provides the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. He argues for an ontologically deflationary account of the nature of quantum information, which is grounded in a revisionary analysis of the concepts of information.
Publisher: Oxford Philosophical Monograph
ISBN: 0199296464
Category : Computers
Languages : en
Pages : 308
Book Description
Christopher G. Timpson provides the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. He argues for an ontologically deflationary account of the nature of quantum information, which is grounded in a revisionary analysis of the concepts of information.
What Is Real?
Author: Adam Becker
Publisher: Basic Books
ISBN: 0465096069
Category : Science
Languages : en
Pages : 389
Book Description
"A thorough, illuminating exploration of the most consequential controversy raging in modern science." --New York Times Book Review An Editor's Choice, New York Times Book Review Longlisted for PEN/E.O. Wilson Prize for Literary Science Writing Longlisted for Goodreads Choice Award Every physicist agrees quantum mechanics is among humanity's finest scientific achievements. But ask what it means, and the result will be a brawl. For a century, most physicists have followed Niels Bohr's solipsistic and poorly reasoned Copenhagen interpretation. Indeed, questioning it has long meant professional ruin, yet some daring physicists, such as John Bell, David Bohm, and Hugh Everett, persisted in seeking the true meaning of quantum mechanics. What Is Real? is the gripping story of this battle of ideas and the courageous scientists who dared to stand up for truth. "An excellent, accessible account." --Wall Street Journal "Splendid. . . . Deeply detailed research, accompanied by charming anecdotes about the scientists." --Washington Post
Publisher: Basic Books
ISBN: 0465096069
Category : Science
Languages : en
Pages : 389
Book Description
"A thorough, illuminating exploration of the most consequential controversy raging in modern science." --New York Times Book Review An Editor's Choice, New York Times Book Review Longlisted for PEN/E.O. Wilson Prize for Literary Science Writing Longlisted for Goodreads Choice Award Every physicist agrees quantum mechanics is among humanity's finest scientific achievements. But ask what it means, and the result will be a brawl. For a century, most physicists have followed Niels Bohr's solipsistic and poorly reasoned Copenhagen interpretation. Indeed, questioning it has long meant professional ruin, yet some daring physicists, such as John Bell, David Bohm, and Hugh Everett, persisted in seeking the true meaning of quantum mechanics. What Is Real? is the gripping story of this battle of ideas and the courageous scientists who dared to stand up for truth. "An excellent, accessible account." --Wall Street Journal "Splendid. . . . Deeply detailed research, accompanied by charming anecdotes about the scientists." --Washington Post
The Everett Interpretation of Quantum Mechanics
Author: Jeffrey A. Barrett
Publisher: Princeton University Press
ISBN: 1400842743
Category : Science
Languages : en
Pages : 402
Book Description
Hugh Everett III was an American physicist best known for his many-worlds interpretation of quantum mechanics, which formed the basis of his PhD thesis at Princeton University in 1957. Although counterintuitive, Everett's revolutionary formulation of quantum mechanics offers the most direct solution to the infamous quantum measurement problem--that is, how and why the singular world of our experience emerges from the multiplicities of alternatives available in the quantum world. The many-worlds interpretation postulates the existence of multiple universes. Whenever a measurement-like interaction occurs, the universe branches into relative states, one for each possible outcome of the measurement, and the world in which we find ourselves is but one of these many, but equally real, possibilities. Everett's challenge to the orthodox interpretation of quantum mechanics was met with scorn from Niels Bohr and other leading physicists, and Everett subsequently abandoned academia to conduct military operations research. Today, however, Everett's formulation of quantum mechanics is widely recognized as one of the most controversial but promising physical theories of the last century. In this book, Jeffrey Barrett and Peter Byrne present the long and short versions of Everett's thesis along with a collection of his explanatory writings and correspondence. These primary source documents, many of them newly discovered and most unpublished until now, reveal how Everett's thinking evolved from his days as a graduate student to his untimely death in 1982. This definitive volume also features Barrett and Byrne's introductory essays, notes, and commentary that put Everett's extraordinary theory into historical and scientific perspective and discuss the puzzles that still remain.
Publisher: Princeton University Press
ISBN: 1400842743
Category : Science
Languages : en
Pages : 402
Book Description
Hugh Everett III was an American physicist best known for his many-worlds interpretation of quantum mechanics, which formed the basis of his PhD thesis at Princeton University in 1957. Although counterintuitive, Everett's revolutionary formulation of quantum mechanics offers the most direct solution to the infamous quantum measurement problem--that is, how and why the singular world of our experience emerges from the multiplicities of alternatives available in the quantum world. The many-worlds interpretation postulates the existence of multiple universes. Whenever a measurement-like interaction occurs, the universe branches into relative states, one for each possible outcome of the measurement, and the world in which we find ourselves is but one of these many, but equally real, possibilities. Everett's challenge to the orthodox interpretation of quantum mechanics was met with scorn from Niels Bohr and other leading physicists, and Everett subsequently abandoned academia to conduct military operations research. Today, however, Everett's formulation of quantum mechanics is widely recognized as one of the most controversial but promising physical theories of the last century. In this book, Jeffrey Barrett and Peter Byrne present the long and short versions of Everett's thesis along with a collection of his explanatory writings and correspondence. These primary source documents, many of them newly discovered and most unpublished until now, reveal how Everett's thinking evolved from his days as a graduate student to his untimely death in 1982. This definitive volume also features Barrett and Byrne's introductory essays, notes, and commentary that put Everett's extraordinary theory into historical and scientific perspective and discuss the puzzles that still remain.
The Many-Worlds Interpretation of Quantum Mechanics
Author: Bryce Seligman Dewitt
Publisher: Princeton University Press
ISBN: 140086805X
Category : Science
Languages : en
Pages : 264
Book Description
A novel interpretation of quantum mechanics, first proposed in brief form by Hugh Everett in 1957, forms the nucleus around which this book has developed. In his interpretation, Dr. Everett denies the existence of a separate classical realm and asserts the propriety of considering a state vector for the whole universe. Because this state vector never collapses, reality as a whole is rigorously deterministic. This reality, which is described jointly by the dynamical variables and the state vector, is not the reality customarily perceived; rather, it is a reality composed of many worlds. By virtue of the temporal development of the dynamical variables, the state vector decomposes naturally into orthogonal vectors, reflecting a continual splitting of the universe into a multitude of mutually unobservable but equally real worlds, in each of which every good measurement has yielded a definite result, and in most of which the familiar statistical quantum laws hold. The volume contains Dr. Everett's short paper from 1957, "'Relative State' Formulation of Quantum Mechanics," and a far longer exposition of his interpretation, entitled "The Theory of the Universal Wave Function," never before published. In addition, other papers by Wheeler, DeWitt, Graham, and Cooper and Van Vechten provide further discussion of the same theme. Together, they constitute virtually the entire world output of scholarly commentary on the Everett interpretation. Originally published in 1973. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 140086805X
Category : Science
Languages : en
Pages : 264
Book Description
A novel interpretation of quantum mechanics, first proposed in brief form by Hugh Everett in 1957, forms the nucleus around which this book has developed. In his interpretation, Dr. Everett denies the existence of a separate classical realm and asserts the propriety of considering a state vector for the whole universe. Because this state vector never collapses, reality as a whole is rigorously deterministic. This reality, which is described jointly by the dynamical variables and the state vector, is not the reality customarily perceived; rather, it is a reality composed of many worlds. By virtue of the temporal development of the dynamical variables, the state vector decomposes naturally into orthogonal vectors, reflecting a continual splitting of the universe into a multitude of mutually unobservable but equally real worlds, in each of which every good measurement has yielded a definite result, and in most of which the familiar statistical quantum laws hold. The volume contains Dr. Everett's short paper from 1957, "'Relative State' Formulation of Quantum Mechanics," and a far longer exposition of his interpretation, entitled "The Theory of the Universal Wave Function," never before published. In addition, other papers by Wheeler, DeWitt, Graham, and Cooper and Van Vechten provide further discussion of the same theme. Together, they constitute virtually the entire world output of scholarly commentary on the Everett interpretation. Originally published in 1973. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Philosophy of Physics
Author: Tim Maudlin
Publisher: Princeton University Press
ISBN: 069118352X
Category : Philosophy
Languages : en
Pages : 249
Book Description
A sophisticated and original introduction to the philosophy of quantum mechanics from one of the world’s leading philosophers of physics In this book, Tim Maudlin, one of the world’s leading philosophers of physics, offers a sophisticated, original introduction to the philosophy of quantum mechanics. The briefest, clearest, and most refined account of his influential approach to the subject, the book will be invaluable to all students of philosophy and physics. Quantum mechanics holds a unique place in the history of physics. It has produced the most accurate predictions of any scientific theory, but, more astonishing, there has never been any agreement about what the theory implies about physical reality. Maudlin argues that the very term “quantum theory” is a misnomer. A proper physical theory should clearly describe what is there and what it does—yet standard textbooks present quantum mechanics as a predictive recipe in search of a physical theory. In contrast, Maudlin explores three proper theories that recover the quantum predictions: the indeterministic wavefunction collapse theory of Ghirardi, Rimini, and Weber; the deterministic particle theory of deBroglie and Bohm; and the conceptually challenging Many Worlds theory of Everett. Each offers a radically different proposal for the nature of physical reality, but Maudlin shows that none of them are what they are generally taken to be.
Publisher: Princeton University Press
ISBN: 069118352X
Category : Philosophy
Languages : en
Pages : 249
Book Description
A sophisticated and original introduction to the philosophy of quantum mechanics from one of the world’s leading philosophers of physics In this book, Tim Maudlin, one of the world’s leading philosophers of physics, offers a sophisticated, original introduction to the philosophy of quantum mechanics. The briefest, clearest, and most refined account of his influential approach to the subject, the book will be invaluable to all students of philosophy and physics. Quantum mechanics holds a unique place in the history of physics. It has produced the most accurate predictions of any scientific theory, but, more astonishing, there has never been any agreement about what the theory implies about physical reality. Maudlin argues that the very term “quantum theory” is a misnomer. A proper physical theory should clearly describe what is there and what it does—yet standard textbooks present quantum mechanics as a predictive recipe in search of a physical theory. In contrast, Maudlin explores three proper theories that recover the quantum predictions: the indeterministic wavefunction collapse theory of Ghirardi, Rimini, and Weber; the deterministic particle theory of deBroglie and Bohm; and the conceptually challenging Many Worlds theory of Everett. Each offers a radically different proposal for the nature of physical reality, but Maudlin shows that none of them are what they are generally taken to be.
The Quantum Theory of Motion
Author: Peter R. Holland
Publisher: Cambridge University Press
ISBN: 9780521485432
Category : Science
Languages : en
Pages : 624
Book Description
An explanation of how quantum processes may be visualised without ambiguity, in terms of a simple physical model.
Publisher: Cambridge University Press
ISBN: 9780521485432
Category : Science
Languages : en
Pages : 624
Book Description
An explanation of how quantum processes may be visualised without ambiguity, in terms of a simple physical model.
Helgoland
Author: Carlo Rovelli
Publisher: Penguin
ISBN: 0593328906
Category : Science
Languages : en
Pages : 256
Book Description
Named a Best Book of 2021 by the Financial Times and a Best Science Book of 2021 by The Guardian “Rovelli is a genius and an amazing communicator… This is the place where science comes to life.” ―Neil Gaiman “One of the warmest, most elegant and most lucid interpreters to the laity of the dazzling enigmas of his discipline...[a] momentous book” ―John Banville, The Wall Street Journal A startling new look at quantum theory, from the New York Times bestselling author of Seven Brief Lessons on Physics, The Order of Time, and Anaximander. One of the world's most renowned theoretical physicists, Carlo Rovelli has entranced millions of readers with his singular perspective on the cosmos. In Helgoland, he examines the enduring enigma of quantum theory. The quantum world Rovelli describes is as beautiful as it is unnerving. Helgoland is a treeless island in the North Sea where the twenty-three-year-old Werner Heisenberg made the crucial breakthrough for the creation of quantum mechanics, setting off a century of scientific revolution. Full of alarming ideas (ghost waves, distant objects that seem to be magically connected, cats that appear both dead and alive), quantum physics has led to countless discoveries and technological advancements. Today our understanding of the world is based on this theory, yet it is still profoundly mysterious. As scientists and philosophers continue to fiercely debate the meaning of the theory, Rovelli argues that its most unsettling contradictions can be explained by seeing the world as fundamentally made of relationships rather than substances. We and everything around us exist only in our interactions with one another. This bold idea suggests new directions for thinking about the structure of reality and even the nature of consciousness. Rovelli makes learning about quantum mechanics an almost psychedelic experience. Shifting our perspective once again, he takes us on a riveting journey through the universe so we can better comprehend our place in it.
Publisher: Penguin
ISBN: 0593328906
Category : Science
Languages : en
Pages : 256
Book Description
Named a Best Book of 2021 by the Financial Times and a Best Science Book of 2021 by The Guardian “Rovelli is a genius and an amazing communicator… This is the place where science comes to life.” ―Neil Gaiman “One of the warmest, most elegant and most lucid interpreters to the laity of the dazzling enigmas of his discipline...[a] momentous book” ―John Banville, The Wall Street Journal A startling new look at quantum theory, from the New York Times bestselling author of Seven Brief Lessons on Physics, The Order of Time, and Anaximander. One of the world's most renowned theoretical physicists, Carlo Rovelli has entranced millions of readers with his singular perspective on the cosmos. In Helgoland, he examines the enduring enigma of quantum theory. The quantum world Rovelli describes is as beautiful as it is unnerving. Helgoland is a treeless island in the North Sea where the twenty-three-year-old Werner Heisenberg made the crucial breakthrough for the creation of quantum mechanics, setting off a century of scientific revolution. Full of alarming ideas (ghost waves, distant objects that seem to be magically connected, cats that appear both dead and alive), quantum physics has led to countless discoveries and technological advancements. Today our understanding of the world is based on this theory, yet it is still profoundly mysterious. As scientists and philosophers continue to fiercely debate the meaning of the theory, Rovelli argues that its most unsettling contradictions can be explained by seeing the world as fundamentally made of relationships rather than substances. We and everything around us exist only in our interactions with one another. This bold idea suggests new directions for thinking about the structure of reality and even the nature of consciousness. Rovelli makes learning about quantum mechanics an almost psychedelic experience. Shifting our perspective once again, he takes us on a riveting journey through the universe so we can better comprehend our place in it.