Author: Jiqun Liu
Publisher: Springer Nature
ISBN: 3031023196
Category : Computers
Languages : en
Pages : 75
Book Description
Since user study design has been widely applied in search interactions and information retrieval (IR) systems evaluation studies, a deep reflection and meta-evaluation of interactive IR (IIR) user studies is critical for sharpening the instruments of IIR research and improving the reliability and validity of the conclusions drawn from IIR user studies. To this end, we developed a faceted framework for supporting user study design, reporting, and evaluation based on a systematic review of the state-of-the-art IIR research papers recently published in several top IR venues (n=462). Within the framework, we identify three major types of research focuses, extract and summarize facet values from specific cases, and highlight the under-reported user study components which may significantly affect the results of research. Then, we employ the faceted framework in evaluating a series of IIR user studies against their respective research questions and explain the roles and impacts of the underlying connections and "collaborations" among different facet values. Through bridging diverse combinations of facet values with the study design decisions made for addressing research problems, the faceted framework can shed light on IIR user study design, reporting, and evaluation practices and help students and young researchers design and assess their own studies.
Interactive IR User Study Design, Evaluation, and Reporting
Author: Jiqun Liu
Publisher: Springer Nature
ISBN: 3031023196
Category : Computers
Languages : en
Pages : 75
Book Description
Since user study design has been widely applied in search interactions and information retrieval (IR) systems evaluation studies, a deep reflection and meta-evaluation of interactive IR (IIR) user studies is critical for sharpening the instruments of IIR research and improving the reliability and validity of the conclusions drawn from IIR user studies. To this end, we developed a faceted framework for supporting user study design, reporting, and evaluation based on a systematic review of the state-of-the-art IIR research papers recently published in several top IR venues (n=462). Within the framework, we identify three major types of research focuses, extract and summarize facet values from specific cases, and highlight the under-reported user study components which may significantly affect the results of research. Then, we employ the faceted framework in evaluating a series of IIR user studies against their respective research questions and explain the roles and impacts of the underlying connections and "collaborations" among different facet values. Through bridging diverse combinations of facet values with the study design decisions made for addressing research problems, the faceted framework can shed light on IIR user study design, reporting, and evaluation practices and help students and young researchers design and assess their own studies.
Publisher: Springer Nature
ISBN: 3031023196
Category : Computers
Languages : en
Pages : 75
Book Description
Since user study design has been widely applied in search interactions and information retrieval (IR) systems evaluation studies, a deep reflection and meta-evaluation of interactive IR (IIR) user studies is critical for sharpening the instruments of IIR research and improving the reliability and validity of the conclusions drawn from IIR user studies. To this end, we developed a faceted framework for supporting user study design, reporting, and evaluation based on a systematic review of the state-of-the-art IIR research papers recently published in several top IR venues (n=462). Within the framework, we identify three major types of research focuses, extract and summarize facet values from specific cases, and highlight the under-reported user study components which may significantly affect the results of research. Then, we employ the faceted framework in evaluating a series of IIR user studies against their respective research questions and explain the roles and impacts of the underlying connections and "collaborations" among different facet values. Through bridging diverse combinations of facet values with the study design decisions made for addressing research problems, the faceted framework can shed light on IIR user study design, reporting, and evaluation practices and help students and young researchers design and assess their own studies.
Interactive IR User Study Design, Evaluation, and Reporting
Author: Jiqun Liu
Publisher: Morgan & Claypool Publishers
ISBN: 1681735806
Category : Computers
Languages : en
Pages : 95
Book Description
Since user study design has been widely applied in search interactions and information retrieval (IR) systems evaluation studies, a deep reflection and meta-evaluation of interactive IR (IIR) user studies is critical for sharpening the instruments of IIR research and improving the reliability and validity of the conclusions drawn from IIR user studies. To this end, we developed a faceted framework for supporting user study design, reporting, and evaluation based on a systematic review of the state-of-the-art IIR research papers recently published in several top IR venues (n=462). Within the framework, we identify three major types of research focuses, extract and summarize facet values from specific cases, and highlight the under-reported user study components which may significantly affect the results of research. Then, we employ the faceted framework in evaluating a series of IIR user studies against their respective research questions and explain the roles and impacts of the underlying connections and "collaborations" among different facet values. Through bridging diverse combinations of facet values with the study design decisions made for addressing research problems, the faceted framework can shed light on IIR user study design, reporting, and evaluation practices and help students and young researchers design and assess their own studies.
Publisher: Morgan & Claypool Publishers
ISBN: 1681735806
Category : Computers
Languages : en
Pages : 95
Book Description
Since user study design has been widely applied in search interactions and information retrieval (IR) systems evaluation studies, a deep reflection and meta-evaluation of interactive IR (IIR) user studies is critical for sharpening the instruments of IIR research and improving the reliability and validity of the conclusions drawn from IIR user studies. To this end, we developed a faceted framework for supporting user study design, reporting, and evaluation based on a systematic review of the state-of-the-art IIR research papers recently published in several top IR venues (n=462). Within the framework, we identify three major types of research focuses, extract and summarize facet values from specific cases, and highlight the under-reported user study components which may significantly affect the results of research. Then, we employ the faceted framework in evaluating a series of IIR user studies against their respective research questions and explain the roles and impacts of the underlying connections and "collaborations" among different facet values. Through bridging diverse combinations of facet values with the study design decisions made for addressing research problems, the faceted framework can shed light on IIR user study design, reporting, and evaluation practices and help students and young researchers design and assess their own studies.
A Behavioral Economics Approach to Interactive Information Retrieval
Author: Jiqun Liu
Publisher: Springer Nature
ISBN: 3031232291
Category : Computers
Languages : en
Pages : 220
Book Description
This book brings together the insights from three different areas, Information Seeking and Retrieval, Cognitive Psychology, and Behavioral Economics, and shows how this new interdisciplinary approach can advance our knowledge about users interacting with diverse search systems, especially their seemingly irrational decisions and anomalies that could not be predicted by most normative models. The first part “Foundation” of this book introduces the general notions and fundamentals of this new approach, as well as the main concepts, terminology and theories. The second part “Beyond Rational Agents” describes the systematic biases and cognitive limits confirmed by behavioral experiments of varying types and explains in detail how they contradict the assumptions and predictions of formal models in information retrieval (IR). The third part “Toward A Behavioral Economics Approach” first synthesizes the findings from existing preliminary research on bounded rationality and behavioral economics modeling in information seeking, retrieval, and recommender system communities. Then, it discusses the implications, open questions and methodological challenges of applying the behavioral economics framework to different sub-areas of IR research and practices, such as modeling users and search sessions, developing unbiased learning to rank and adaptive recommendations algorithms, implementing bias-aware intelligent task support, as well as extending the conceptualization and evaluation on IR fairness, accountability, transparency and ethics (FATE) with the knowledge regarding both human biases and algorithmic biases. This book introduces a behavioral economics framework to IR scientists seeking a new perspective on both fundamental and new emerging problems of IR as well as the development and evaluation of bias-aware intelligent information systems. It is especially intended for researchers working on IR and human-information interaction who want to learn about the potential offered by behavioral economics in their own research areas.
Publisher: Springer Nature
ISBN: 3031232291
Category : Computers
Languages : en
Pages : 220
Book Description
This book brings together the insights from three different areas, Information Seeking and Retrieval, Cognitive Psychology, and Behavioral Economics, and shows how this new interdisciplinary approach can advance our knowledge about users interacting with diverse search systems, especially their seemingly irrational decisions and anomalies that could not be predicted by most normative models. The first part “Foundation” of this book introduces the general notions and fundamentals of this new approach, as well as the main concepts, terminology and theories. The second part “Beyond Rational Agents” describes the systematic biases and cognitive limits confirmed by behavioral experiments of varying types and explains in detail how they contradict the assumptions and predictions of formal models in information retrieval (IR). The third part “Toward A Behavioral Economics Approach” first synthesizes the findings from existing preliminary research on bounded rationality and behavioral economics modeling in information seeking, retrieval, and recommender system communities. Then, it discusses the implications, open questions and methodological challenges of applying the behavioral economics framework to different sub-areas of IR research and practices, such as modeling users and search sessions, developing unbiased learning to rank and adaptive recommendations algorithms, implementing bias-aware intelligent task support, as well as extending the conceptualization and evaluation on IR fairness, accountability, transparency and ethics (FATE) with the knowledge regarding both human biases and algorithmic biases. This book introduces a behavioral economics framework to IR scientists seeking a new perspective on both fundamental and new emerging problems of IR as well as the development and evaluation of bias-aware intelligent information systems. It is especially intended for researchers working on IR and human-information interaction who want to learn about the potential offered by behavioral economics in their own research areas.
Understanding and Evaluating Search Experience
Author: Stone Maria
Publisher: Springer Nature
ISBN: 3031792165
Category : Computers
Languages : en
Pages : 87
Book Description
This book is intended for anyone interested in learning more about how search works and how it is evaluated. We all use search—it's a familiar utility. Yet, few of us stop and think about how search works, what makes search results good, and who, if anyone, decides what good looks like. Search has a long and glorious history, yet it continues to evolve, and with it, the measurement and our understanding of the kinds of experiences search can deliver continues to evolve, as well. We will discuss the basics of how search engines work, how humans use search engines, and how measurement works. Equipped with these general topics, we will then dive into the established ways of measuring search user experience, and their pros and cons. We will talk about collecting labels from human judges, analyzing usage logs, surveying end users, and even touch upon automated evaluation methods. After introducing different ways of collecting metrics, we will cover experimentation as it applies to search evaluation. The book will cover evaluating different aspects of search—from search user interface (UI), to results presentation, to the quality of search algorithms. In covering these topics, we will touch upon many issues in evaluation that became sources of controversy—from user privacy, to ethical considerations, to transparency, to potential for bias. We will conclude by contrasting measuring with understanding, and pondering the future of search evaluation.
Publisher: Springer Nature
ISBN: 3031792165
Category : Computers
Languages : en
Pages : 87
Book Description
This book is intended for anyone interested in learning more about how search works and how it is evaluated. We all use search—it's a familiar utility. Yet, few of us stop and think about how search works, what makes search results good, and who, if anyone, decides what good looks like. Search has a long and glorious history, yet it continues to evolve, and with it, the measurement and our understanding of the kinds of experiences search can deliver continues to evolve, as well. We will discuss the basics of how search engines work, how humans use search engines, and how measurement works. Equipped with these general topics, we will then dive into the established ways of measuring search user experience, and their pros and cons. We will talk about collecting labels from human judges, analyzing usage logs, surveying end users, and even touch upon automated evaluation methods. After introducing different ways of collecting metrics, we will cover experimentation as it applies to search evaluation. The book will cover evaluating different aspects of search—from search user interface (UI), to results presentation, to the quality of search algorithms. In covering these topics, we will touch upon many issues in evaluation that became sources of controversy—from user privacy, to ethical considerations, to transparency, to potential for bias. We will conclude by contrasting measuring with understanding, and pondering the future of search evaluation.
Simulating Information Retrieval Test Collections
Author: David Hawking
Publisher: Springer Nature
ISBN: 3031023234
Category : Computers
Languages : en
Pages : 162
Book Description
Simulated test collections may find application in situations where real datasets cannot easily be accessed due to confidentiality concerns or practical inconvenience. They can potentially support Information Retrieval (IR) experimentation, tuning, validation, performance prediction, and hardware sizing. Naturally, the accuracy and usefulness of results obtained from a simulation depend upon the fidelity and generality of the models which underpin it. The fidelity of emulation of a real corpus is likely to be limited by the requirement that confidential information in the real corpus should not be able to be extracted from the emulated version. We present a range of methods exploring trade-offs between emulation fidelity and degree of preservation of privacy. We present three different simple types of text generator which work at a micro level: Markov models, neural net models, and substitution ciphers. We also describe macro level methods where we can engineer macro properties of a corpus, giving a range of models for each of the salient properties: document length distribution, word frequency distribution (for independent and non-independent cases), word length and textual representation, and corpus growth. We present results of emulating existing corpora and for scaling up corpora by two orders of magnitude. We show that simulated collections generated with relatively simple methods are suitable for some purposes and can be generated very quickly. Indeed it may sometimes be feasible to embed a simple lightweight corpus generator into an indexer for the purpose of efficiency studies. Naturally, a corpus of artificial text cannot support IR experimentation in the absence of a set of compatible queries. We discuss and experiment with published methods for query generation and query log emulation. We present a proof-of-the-pudding study in which we observe the predictive accuracy of efficiency and effectiveness results obtained on emulated versions of TREC corpora. The study includes three open-source retrieval systems and several TREC datasets. There is a trade-off between confidentiality and prediction accuracy and there are interesting interactions between retrieval systems and datasets. Our tentative conclusion is that there are emulation methods which achieve useful prediction accuracy while providing a level of confidentiality adequate for many applications. Many of the methods described here have been implemented in the open source project SynthaCorpus, accessible at: https://bitbucket.org/davidhawking/synthacorpus/
Publisher: Springer Nature
ISBN: 3031023234
Category : Computers
Languages : en
Pages : 162
Book Description
Simulated test collections may find application in situations where real datasets cannot easily be accessed due to confidentiality concerns or practical inconvenience. They can potentially support Information Retrieval (IR) experimentation, tuning, validation, performance prediction, and hardware sizing. Naturally, the accuracy and usefulness of results obtained from a simulation depend upon the fidelity and generality of the models which underpin it. The fidelity of emulation of a real corpus is likely to be limited by the requirement that confidential information in the real corpus should not be able to be extracted from the emulated version. We present a range of methods exploring trade-offs between emulation fidelity and degree of preservation of privacy. We present three different simple types of text generator which work at a micro level: Markov models, neural net models, and substitution ciphers. We also describe macro level methods where we can engineer macro properties of a corpus, giving a range of models for each of the salient properties: document length distribution, word frequency distribution (for independent and non-independent cases), word length and textual representation, and corpus growth. We present results of emulating existing corpora and for scaling up corpora by two orders of magnitude. We show that simulated collections generated with relatively simple methods are suitable for some purposes and can be generated very quickly. Indeed it may sometimes be feasible to embed a simple lightweight corpus generator into an indexer for the purpose of efficiency studies. Naturally, a corpus of artificial text cannot support IR experimentation in the absence of a set of compatible queries. We discuss and experiment with published methods for query generation and query log emulation. We present a proof-of-the-pudding study in which we observe the predictive accuracy of efficiency and effectiveness results obtained on emulated versions of TREC corpora. The study includes three open-source retrieval systems and several TREC datasets. There is a trade-off between confidentiality and prediction accuracy and there are interesting interactions between retrieval systems and datasets. Our tentative conclusion is that there are emulation methods which achieve useful prediction accuracy while providing a level of confidentiality adequate for many applications. Many of the methods described here have been implemented in the open source project SynthaCorpus, accessible at: https://bitbucket.org/davidhawking/synthacorpus/
Methods for Evaluating Interactive Information Retrieval Systems with Users
Author: Diane Kelly
Publisher: Now Publishers Inc
ISBN: 1601982240
Category : Database management
Languages : en
Pages : 246
Book Description
Provides an overview and instruction on the evaluation of interactive information retrieval systems with users.
Publisher: Now Publishers Inc
ISBN: 1601982240
Category : Database management
Languages : en
Pages : 246
Book Description
Provides an overview and instruction on the evaluation of interactive information retrieval systems with users.
Advances in Information Retrieval
Author: Nazli Goharian
Publisher: Springer Nature
ISBN: 3031560698
Category :
Languages : en
Pages : 529
Book Description
Publisher: Springer Nature
ISBN: 3031560698
Category :
Languages : en
Pages : 529
Book Description
Word Association Thematic Analysis
Author: Michael Thelwall
Publisher: Springer Nature
ISBN: 3031023242
Category : Computers
Languages : en
Pages : 111
Book Description
Many research projects involve analyzing sets of texts from the social web or elsewhere to get insights into issues, opinions, interests, news discussions, or communication styles. For example, many studies have investigated reactions to Covid-19 social distancing restrictions, conspiracy theories, and anti-vaccine sentiment on social media. This book describes word association thematic analysis, a mixed methods strategy to identify themes within a collection of social web or other texts. It identifies these themes in the differences between subsets of the texts, including female vs. male vs. nonbinary, older vs. newer, country A vs. country B, positive vs. negative sentiment, high scoring vs. low scoring, or subtopic A vs. subtopic B. It can also be used to identify the differences between a topic-focused collection of texts and a reference collection. The method starts by automatically finding words that are statistically significantly more common in one subset than another, then identifies the context of these words and groups them into themes. It is supported by the free Windows-based software Mozdeh for data collection or importing and for the quantitative analysis stages. This book explains the word association thematic analysis method, with examples, and gives practical advice for using it. It is primarily intended for social media researchers and students, although the method is applicable to any collection of short texts.
Publisher: Springer Nature
ISBN: 3031023242
Category : Computers
Languages : en
Pages : 111
Book Description
Many research projects involve analyzing sets of texts from the social web or elsewhere to get insights into issues, opinions, interests, news discussions, or communication styles. For example, many studies have investigated reactions to Covid-19 social distancing restrictions, conspiracy theories, and anti-vaccine sentiment on social media. This book describes word association thematic analysis, a mixed methods strategy to identify themes within a collection of social web or other texts. It identifies these themes in the differences between subsets of the texts, including female vs. male vs. nonbinary, older vs. newer, country A vs. country B, positive vs. negative sentiment, high scoring vs. low scoring, or subtopic A vs. subtopic B. It can also be used to identify the differences between a topic-focused collection of texts and a reference collection. The method starts by automatically finding words that are statistically significantly more common in one subset than another, then identifies the context of these words and groups them into themes. It is supported by the free Windows-based software Mozdeh for data collection or importing and for the quantitative analysis stages. This book explains the word association thematic analysis method, with examples, and gives practical advice for using it. It is primarily intended for social media researchers and students, although the method is applicable to any collection of short texts.
Compatibility Modeling
Author: Xuemeng Song
Publisher: Springer Nature
ISBN: 3031023218
Category : Computers
Languages : en
Pages : 118
Book Description
Nowadays, fashion has become an essential aspect of people's daily life. As each outfit usually comprises several complementary items, such as a top, bottom, shoes, and accessories, a proper outfit largely relies on the harmonious matching of these items. Nevertheless, not everyone is good at outfit composition, especially those who have a poor fashion aesthetic. Fortunately, in recent years the number of online fashion-oriented communities, like IQON and Chictopia, as well as e-commerce sites, like Amazon and eBay, has grown. The tremendous amount of real-world data regarding people's various fashion behaviors has opened a door to automatic clothing matching. Despite its significant value, compatibility modeling for clothing matching that assesses the compatibility score for a given set of (equal or more than two) fashion items, e.g., a blouse and a skirt, yields tough challenges: (a) the absence of comprehensive benchmark; (b) comprehensive compatibility modeling with the multi-modal feature variables is largely untapped; (c) how to utilize the domain knowledge to guide the machine learning; (d) how to enhance the interpretability of the compatibility modeling; and (e) how to model the user factor in the personalized compatibility modeling. These challenges have been largely unexplored to date. In this book, we shed light on several state-of-the-art theories on compatibility modeling. In particular, to facilitate the research, we first build three large-scale benchmark datasets from different online fashion websites, including IQON and Amazon. We then introduce a general data-driven compatibility modeling scheme based on advanced neural networks. To make use of the abundant fashion domain knowledge, i.e., clothing matching rules, we next present a novel knowledge-guided compatibility modeling framework. Thereafter, to enhance the model interpretability, we put forward a prototype-wise interpretable compatibility modeling approach. Following that, noticing the subjective aesthetics of users, we extend the general compatibility modeling to the personalized version. Moreover, we further study the real-world problem of personalized capsule wardrobe creation, aiming to generate a minimum collection of garments that is both compatible and suitable for the user. Finally, we conclude the book and present future research directions, such as the generative compatibility modeling, virtual try-on with arbitrary poses, and clothing generation.
Publisher: Springer Nature
ISBN: 3031023218
Category : Computers
Languages : en
Pages : 118
Book Description
Nowadays, fashion has become an essential aspect of people's daily life. As each outfit usually comprises several complementary items, such as a top, bottom, shoes, and accessories, a proper outfit largely relies on the harmonious matching of these items. Nevertheless, not everyone is good at outfit composition, especially those who have a poor fashion aesthetic. Fortunately, in recent years the number of online fashion-oriented communities, like IQON and Chictopia, as well as e-commerce sites, like Amazon and eBay, has grown. The tremendous amount of real-world data regarding people's various fashion behaviors has opened a door to automatic clothing matching. Despite its significant value, compatibility modeling for clothing matching that assesses the compatibility score for a given set of (equal or more than two) fashion items, e.g., a blouse and a skirt, yields tough challenges: (a) the absence of comprehensive benchmark; (b) comprehensive compatibility modeling with the multi-modal feature variables is largely untapped; (c) how to utilize the domain knowledge to guide the machine learning; (d) how to enhance the interpretability of the compatibility modeling; and (e) how to model the user factor in the personalized compatibility modeling. These challenges have been largely unexplored to date. In this book, we shed light on several state-of-the-art theories on compatibility modeling. In particular, to facilitate the research, we first build three large-scale benchmark datasets from different online fashion websites, including IQON and Amazon. We then introduce a general data-driven compatibility modeling scheme based on advanced neural networks. To make use of the abundant fashion domain knowledge, i.e., clothing matching rules, we next present a novel knowledge-guided compatibility modeling framework. Thereafter, to enhance the model interpretability, we put forward a prototype-wise interpretable compatibility modeling approach. Following that, noticing the subjective aesthetics of users, we extend the general compatibility modeling to the personalized version. Moreover, we further study the real-world problem of personalized capsule wardrobe creation, aiming to generate a minimum collection of garments that is both compatible and suitable for the user. Finally, we conclude the book and present future research directions, such as the generative compatibility modeling, virtual try-on with arbitrary poses, and clothing generation.
Word Association Thematic Analysis
Author: Mike Thelwall
Publisher: Morgan & Claypool Publishers
ISBN: 1636390668
Category : Computers
Languages : en
Pages : 131
Book Description
This book explains the word association thematic analysis method, with examples, and gives practical advice for using it. It is primarily intended for social media researchers and students, although the method is applicable to any collection of short texts. Many research projects involve analyzing sets of texts from the social web or elsewhere to get insights into issues, opinions, interests, news discussions, or communication styles. For example, many studies have investigated reactions to Covid-19 social distancing restrictions, conspiracy theories, and anti-vaccine sentiment on social media. This book describes word association thematic analysis, a mixed methods strategy to identify themes within a collection of social web or other texts. It identifies these themes in the differences between subsets of the texts, including female vs. male vs. nonbinary, older vs. newer, country A vs. country B, positive vs. negative sentiment, high scoring vs. low scoring, or subtopic A vs. subtopic B. It can also be used to identify the differences between a topic-focused collection of texts and a reference collection. The method starts by automatically finding words that are statistically significantly more common in one subset than another, then identifies the context of these words and groups them into themes. It is supported by the free Windows-based software Mozdeh for data collection or importing and for the quantitative analysis stages.
Publisher: Morgan & Claypool Publishers
ISBN: 1636390668
Category : Computers
Languages : en
Pages : 131
Book Description
This book explains the word association thematic analysis method, with examples, and gives practical advice for using it. It is primarily intended for social media researchers and students, although the method is applicable to any collection of short texts. Many research projects involve analyzing sets of texts from the social web or elsewhere to get insights into issues, opinions, interests, news discussions, or communication styles. For example, many studies have investigated reactions to Covid-19 social distancing restrictions, conspiracy theories, and anti-vaccine sentiment on social media. This book describes word association thematic analysis, a mixed methods strategy to identify themes within a collection of social web or other texts. It identifies these themes in the differences between subsets of the texts, including female vs. male vs. nonbinary, older vs. newer, country A vs. country B, positive vs. negative sentiment, high scoring vs. low scoring, or subtopic A vs. subtopic B. It can also be used to identify the differences between a topic-focused collection of texts and a reference collection. The method starts by automatically finding words that are statistically significantly more common in one subset than another, then identifies the context of these words and groups them into themes. It is supported by the free Windows-based software Mozdeh for data collection or importing and for the quantitative analysis stages.