Integrable Systems on Lie Algebras and Symmetric Spaces

Integrable Systems on Lie Algebras and Symmetric Spaces PDF Author: A. T. Fomenko
Publisher: CRC Press
ISBN: 9782881241703
Category : Mathematics
Languages : en
Pages : 316

Get Book Here

Book Description
Second volume in the series, translated from the Russian, sets out new regular methods for realizing Hamilton's canonical equations in Lie algebras and symmetric spaces. Begins by constructing the algebraic embeddings in Lie algebras of Hamiltonian systems, going on to present effective methods for constructing complete sets of functions in involution on orbits of coadjoint representations of Lie groups. Ends with the proof of the full integrability of a wide range of many- parameter families of Hamiltonian systems that allow algebraicization. Annotation copyrighted by Book News, Inc., Portland, OR

Integrable Systems on Lie Algebras and Symmetric Spaces

Integrable Systems on Lie Algebras and Symmetric Spaces PDF Author: A. T. Fomenko
Publisher: CRC Press
ISBN: 9782881241703
Category : Mathematics
Languages : en
Pages : 316

Get Book Here

Book Description
Second volume in the series, translated from the Russian, sets out new regular methods for realizing Hamilton's canonical equations in Lie algebras and symmetric spaces. Begins by constructing the algebraic embeddings in Lie algebras of Hamiltonian systems, going on to present effective methods for constructing complete sets of functions in involution on orbits of coadjoint representations of Lie groups. Ends with the proof of the full integrability of a wide range of many- parameter families of Hamiltonian systems that allow algebraicization. Annotation copyrighted by Book News, Inc., Portland, OR

Integrable Systems, Geometry, and Topology

Integrable Systems, Geometry, and Topology PDF Author: Chuu-lian Terng
Publisher: American Mathematical Soc.
ISBN: 0821840487
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
The articles in this volume are based on lectures from a program on integrable systems and differential geometry held at Taiwan's National Center for Theoretical Sciences. As is well-known, for many soliton equations, the solutions have interpretations as differential geometric objects, and thereby techniques of soliton equations have been successfully applied to the study of geometric problems. The article by Burstall gives a beautiful exposition on isothermic surfaces and theirrelations to integrable systems, and the two articles by Guest give an introduction to quantum cohomology, carry out explicit computations of the quantum cohomology of flag manifolds and Hirzebruch surfaces, and give a survey of Givental's quantum differential equations. The article by Heintze, Liu,and Olmos is on the theory of isoparametric submanifolds in an arbitrary Riemannian manifold, which is related to the n-wave equation when the ambient manifold is Euclidean. Mukai-Hidano and Ohnita present a survey on the moduli space of Yang-Mills-Higgs equations on Riemann surfaces. The article by Terng and Uhlenbeck explains the gauge equivalence of the matrix non-linear Schrödinger equation, the Schrödinger flow on Grassmanian, and the Heisenberg Feromagnetic model. The bookprovides an introduction to integrable systems and their relation to differential geometry. It is suitable for advanced graduate students and research mathematicians. Information for our distributors: Titles in this series are copublished with International Press, Cambridge, MA.

Optimal Control and Geometry: Integrable Systems

Optimal Control and Geometry: Integrable Systems PDF Author: Velimir Jurdjevic
Publisher: Cambridge University Press
ISBN: 1316586332
Category : Mathematics
Languages : en
Pages : 437

Get Book Here

Book Description
The synthesis of symplectic geometry, the calculus of variations and control theory offered in this book provides a crucial foundation for the understanding of many problems in applied mathematics. Focusing on the theory of integrable systems, this book introduces a class of optimal control problems on Lie groups, whose Hamiltonians, obtained through the Maximum Principle of optimality, shed new light on the theory of integrable systems. These Hamiltonians provide an original and unified account of the existing theory of integrable systems. The book particularly explains much of the mystery surrounding the Kepler problem, the Jacobi problem and the Kovalevskaya Top. It also reveals the ubiquitous presence of elastic curves in integrable systems up to the soliton solutions of the non-linear Schroedinger's equation. Containing a useful blend of theory and applications, this is an indispensable guide for graduates and researchers in many fields, from mathematical physics to space control.

Algebraic Aspects of Integrable Systems

Algebraic Aspects of Integrable Systems PDF Author: A.S. Fokas
Publisher: Springer Science & Business Media
ISBN: 1461224349
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
A collection of articles in memory of Irene Dorfman and her research in mathematical physics. Among the topics covered are: the Hamiltonian and bi-Hamiltonian nature of continuous and discrete integrable equations; the t-function construction; the r-matrix formulation of integrable systems; pseudo-differential operators and modular forms; master symmetries and the Bocher theorem; asymptotic integrability; the integrability of the equations of associativity; invariance under Laplace-darboux transformations; trace formulae of the Dirac and Schrodinger periodic operators; and certain canonical 1-forms.

Algebraic Integrability, Painlevé Geometry and Lie Algebras

Algebraic Integrability, Painlevé Geometry and Lie Algebras PDF Author: Mark Adler
Publisher: Springer Science & Business Media
ISBN: 366205650X
Category : Mathematics
Languages : en
Pages : 487

Get Book Here

Book Description
This Ergebnisse volume is aimed at a wide readership of mathematicians and physicists, graduate students and professionals. The main thrust of the book is to show how algebraic geometry, Lie theory and Painlevé analysis can be used to explicitly solve integrable differential equations and construct the algebraic tori on which they linearize; at the same time, it is, for the student, a playing ground to applying algebraic geometry and Lie theory. The book is meant to be reasonably self-contained and presents numerous examples. The latter appear throughout the text to illustrate the ideas, and make up the core of the last part of the book. The first part of the book contains the basic tools from Lie groups, algebraic and differential geometry to understand the main topic.

Differential Geometry and Integrable Systems

Differential Geometry and Integrable Systems PDF Author: Martin A. Guest
Publisher: American Mathematical Soc.
ISBN: 0821829386
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
Ideas and techniques from the theory of integrable systems are playing an increasingly important role in geometry. Thanks to the development of tools from Lie theory, algebraic geometry, symplectic geometry, and topology, classical problems are investigated more systematically. New problems are also arising in mathematical physics. A major international conference was held at the University of Tokyo in July 2000. It brought together scientists in all of the areas influenced byintegrable systems. This book is the first of three collections of expository and research articles. This volume focuses on differential geometry. It is remarkable that many classical objects in surface theory and submanifold theory are described as integrable systems. Having such a description generallyreveals previously unnoticed symmetries and can lead to surprisingly explicit solutions. Surfaces of constant curvature in Euclidean space, harmonic maps from surfaces to symmetric spaces, and analogous structures on higher-dimensional manifolds are some of the examples that have broadened the horizons of differential geometry, bringing a rich supply of concrete examples into the theory of integrable systems. Many of the articles in this volume are written by prominent researchers and willserve as introductions to the topics. It is intended for graduate students and researchers interested in integrable systems and their relations to differential geometry, topology, algebraic geometry, and physics. The second volume from this conference also available from the AMS is Integrable Systems,Topology, and Physics, Volume 309 CONM/309in the Contemporary Mathematics series. The forthcoming third volume will be published by the Mathematical Society of Japan and will be available outside of Japan from the AMS in the Advanced Studies in Pure Mathematics series.

Integrable Systems of Classical Mechanics and Lie Algebras Volume I

Integrable Systems of Classical Mechanics and Lie Algebras Volume I PDF Author: PERELOMOV
Publisher: Birkhäuser
ISBN: 3034892578
Category : Science
Languages : en
Pages : 312

Get Book Here

Book Description
This book offers a systematic presentation of a variety of methods and results concerning integrable systems of classical mechanics. The investigation of integrable systems was an important line of study in the last century, but up until recently only a small number of examples with two or more degrees of freedom were known. In the last fifteen years however, remarkable progress has been made in this field via the so-called isospectral deformation method which makes extensive use of group-theoretical concepts. The book focuses mainly on the development and applications of this new method, and also gives a fairly complete survey of the older classic results. Chapter 1 contains the necessary background material and outlines the isospectral deformation method in a Lie-algebraic form. Chapter 2 gives an account of numerous previously known integrable systems. Chapter 3 deals with many-body systems of generalized Calogero-Moser type, related to root systems of simple Lie algebras. Chapter 4 is devoted to the Toda lattice and its various modifications seen from the group-theoretic point of view. Chapter 5 investigates some additional topics related to many-body systems. The book will be valuable to students as well as researchers.

Geometry of Lie Groups

Geometry of Lie Groups PDF Author: B. Rosenfeld
Publisher: Springer Science & Business Media
ISBN: 9780792343905
Category : Mathematics
Languages : ja
Pages : 424

Get Book Here

Book Description
This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numerous interpretations of various spaces different from our usual space allow us, like stereoscopic vision, to see many traits of these spaces absent in the usual space.

Integrable Systems, Topology, and Physics

Integrable Systems, Topology, and Physics PDF Author: Martin A. Guest
Publisher: American Mathematical Soc.
ISBN: 0821829394
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
Ideas and techniques from the theory of integrable systems are playing an increasingly important role in geometry. Thanks to the development of tools from Lie theory, algebraic geometry, symplectic geometry, and topology, classical problems are investigated more systematically. New problems are also arising in mathematical physics. A major international conference was held at the University of Tokyo in July 2000. It brought together scientists in all of the areas influenced by integrable systems. This book is the second of three collections of expository and research articles. This volume focuses on topology and physics. The role of zero curvature equations outside of the traditional context of differential geometry has been recognized relatively recently, but it has been an extraordinarily productive one, and most of the articles in this volume make some reference to it. Symplectic geometry, Floer homology, twistor theory, quantum cohomology, and the structure of special equations of mathematical physics, such as the Toda field equations--all of these areas have gained from the integrable systems point of view and contributed to it. Many of the articles in this volume are written by prominent researchers and will serve as introductions to the topics. It is intended for graduate students and researchers interested in integrable systems and their relations to differential geometry, topology, algebraic geometry, and physics. The first volume from this conference also available from the AMS is Differential Geometry and Integrable Systems, Volume 308 CONM/308 in the Contemporary Mathematics series. The forthcoming third volume will be published by the Mathematical Society of Japan and will be available outside of Japan from the AMS in the Advanced Studies in Pure Mathematics series.

Elliptic Integrable Systems

Elliptic Integrable Systems PDF Author: Idrisse Khemar
Publisher: American Mathematical Soc.
ISBN: 0821869256
Category : Mathematics
Languages : en
Pages : 234

Get Book Here

Book Description
In this paper, the author studies all the elliptic integrable systems, in the sense of C, that is to say, the family of all the $m$-th elliptic integrable systems associated to a $k^\prime$-symmetric space $N=G/G_0$. The author describes the geometry behind this family of integrable systems for which we know how to construct (at least locally) all the solutions. The introduction gives an overview of all the main results, as well as some related subjects and works, and some additional motivations.