Integrability, Quantization, and Geometry: I. Integrable Systems

Integrability, Quantization, and Geometry: I. Integrable Systems PDF Author: Sergey Novikov
Publisher: American Mathematical Soc.
ISBN: 1470455919
Category : Education
Languages : en
Pages : 516

Get Book

Book Description
This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.

Integrability, Quantization, and Geometry: I. Integrable Systems

Integrability, Quantization, and Geometry: I. Integrable Systems PDF Author: Sergey Novikov
Publisher: American Mathematical Soc.
ISBN: 1470455919
Category : Education
Languages : en
Pages : 516

Get Book

Book Description
This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.

Integrability, Quantization, and Geometry

Integrability, Quantization, and Geometry PDF Author: Sergeĭ Petrovich Novikov
Publisher:
ISBN: 9781470464349
Category : Electronic books
Languages : en
Pages : 542

Get Book

Book Description
This book is a collection of articles written in memory of Boris Dubrovin (1950-2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher.The contributions to this collection of papers are split into two parts: ""Integrable Systems"" and ""Quantum Theories and Algebraic Geometry"", reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, i.

Geometry, Integrability and Quantization

Geometry, Integrability and Quantization PDF Author: Ivailo M. Mladenov
Publisher:
ISBN:
Category : Biomathematics
Languages : en
Pages : 308

Get Book

Book Description


Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry

Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry PDF Author: Sergey Novikov
Publisher: American Mathematical Soc.
ISBN: 1470455927
Category : Education
Languages : en
Pages : 480

Get Book

Book Description
This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.

Quantization, Geometry and Noncommutative Structures in Mathematics and Physics

Quantization, Geometry and Noncommutative Structures in Mathematics and Physics PDF Author: Alexander Cardona
Publisher: Springer
ISBN: 3319654276
Category : Science
Languages : en
Pages : 341

Get Book

Book Description
This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.

Geometry, Integrability and Quantization

Geometry, Integrability and Quantization PDF Author: Ivailo M. Mladenov
Publisher:
ISBN:
Category : Geometric quantization
Languages : en
Pages :

Get Book

Book Description


Geometry and Integrability

Geometry and Integrability PDF Author: Lionel Mason
Publisher: Cambridge University Press
ISBN: 9780521529990
Category : Mathematics
Languages : en
Pages : 170

Get Book

Book Description
Articles from leading researchers to introduce the reader to cutting-edge topics in integrable systems theory.

Lectures on the Geometry of Quantization

Lectures on the Geometry of Quantization PDF Author: Sean Bates
Publisher: American Mathematical Soc.
ISBN: 9780821807989
Category : Mathematics
Languages : en
Pages : 150

Get Book

Book Description
These notes are based on a course entitled ``Symplectic Geometry and Geometric Quantization'' taught by Alan Weinstein at the University of California, Berkeley (fall 1992) and at the Centre Emile Borel (spring 1994). The only prerequisite for the course needed is a knowledge of the basic notions from the theory of differentiable manifolds (differential forms, vector fields, transversality, etc.). The aim is to give students an introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role these ideas play in formalizing the transition between the mathematics of classical dynamics (hamiltonian flows on symplectic manifolds) and quantum mechanics (unitary flows on Hilbert spaces). These notes are meant to function as a guide to the literature. The authors refer to other sources for many details that are omitted and can be bypassed on a first reading.

Arithmetic and Geometry Around Quantization

Arithmetic and Geometry Around Quantization PDF Author: Özgür Ceyhan
Publisher: Springer Science & Business Media
ISBN: 0817648313
Category : Mathematics
Languages : en
Pages : 292

Get Book

Book Description
This volume comprises both research and survey articles originating from the conference on Arithmetic and Geometry around Quantization held in Istanbul in 2006. A wide range of topics related to quantization are covered, thus aiming to give a glimpse of a broad subject in very different perspectives.

Quantum Theory, Deformation and Integrability

Quantum Theory, Deformation and Integrability PDF Author: R. Carroll
Publisher: Elsevier
ISBN: 9780080540085
Category : Science
Languages : en
Pages : 420

Get Book

Book Description
About four years ago a prominent string theorist was quoted as saying that it might be possible to understand quantum mechanics by the year 2000. Sometimes new mathematical developments make such understanding appear possible and even close, but on the other hand, increasing lack of experimental verification make it seem to be further distant. In any event one seems to arrive at new revolutions in physics and mathematics every year. This book hopes to convey some of the excitment of this period, but will adopt a relatively pedestrian approach designed to illuminate the relations between quantum and classical. There will be some discussion of philosophical matters such as measurement, uncertainty, decoherence, etc. but philosophy will not be emphasized; generally we want to enjoy the fruits of computation based on the operator formulation of QM and quantum field theory. In Chapter 1 connections of QM to deterministic behavior are exhibited in the trajectory representations of Faraggi-Matone. Chapter 1 also includes a review of KP theory and some preliminary remarks on coherent states, density matrices, etc. and more on deterministic theory. We develop in Chapter 4 relations between quantization and integrability based on Moyal brackets, discretizations, KP, strings and Hirota formulas, and in Chapter 2 we study the QM of embedded curves and surfaces illustrating some QM effects of geometry. Chapter 3 is on quantum integrable systems, quantum groups, and modern deformation quantization. Chapter 5 involves the Whitham equations in various roles mediating between QM and classical behavior. In particular, connections to Seiberg-Witten theory (arising in N = 2 supersymmetric (susy) Yang-Mills (YM) theory) are discussed and we would still like to understand more deeply what is going on. Thus in Chapter 5 we will try to give some conceptual background for susy, gauge theories, renormalization, etc. from both a physical and mathematical point of view. In Chapter 6 we continue the deformation quantization then by exhibiting material based on and related to noncommutative geometry and gauge theory.