Author: Huan Liu
Publisher: Springer Science & Business Media
ISBN: 1475733593
Category : Computers
Languages : en
Pages : 433
Book Description
The ability to analyze and understand massive data sets lags far behind the ability to gather and store the data. To meet this challenge, knowledge discovery and data mining (KDD) is growing rapidly as an emerging field. However, no matter how powerful computers are now or will be in the future, KDD researchers and practitioners must consider how to manage ever-growing data which is, ironically, due to the extensive use of computers and ease of data collection with computers. Many different approaches have been used to address the data explosion issue, such as algorithm scale-up and data reduction. Instance, example, or tuple selection pertains to methods or algorithms that select or search for a representative portion of data that can fulfill a KDD task as if the whole data is used. Instance selection is directly related to data reduction and becomes increasingly important in many KDD applications due to the need for processing efficiency and/or storage efficiency. One of the major means of instance selection is sampling whereby a sample is selected for testing and analysis, and randomness is a key element in the process. Instance selection also covers methods that require search. Examples can be found in density estimation (finding the representative instances - data points - for a cluster); boundary hunting (finding the critical instances to form boundaries to differentiate data points of different classes); and data squashing (producing weighted new data with equivalent sufficient statistics). Other important issues related to instance selection extend to unwanted precision, focusing, concept drifts, noise/outlier removal, data smoothing, etc. Instance Selection and Construction for Data Mining brings researchers and practitioners together to report new developments and applications, to share hard-learned experiences in order to avoid similar pitfalls, and to shed light on the future development of instance selection. This volume serves as a comprehensive reference for graduate students, practitioners and researchers in KDD.
Instance Selection and Construction for Data Mining
Author: Huan Liu
Publisher: Springer Science & Business Media
ISBN: 1475733593
Category : Computers
Languages : en
Pages : 433
Book Description
The ability to analyze and understand massive data sets lags far behind the ability to gather and store the data. To meet this challenge, knowledge discovery and data mining (KDD) is growing rapidly as an emerging field. However, no matter how powerful computers are now or will be in the future, KDD researchers and practitioners must consider how to manage ever-growing data which is, ironically, due to the extensive use of computers and ease of data collection with computers. Many different approaches have been used to address the data explosion issue, such as algorithm scale-up and data reduction. Instance, example, or tuple selection pertains to methods or algorithms that select or search for a representative portion of data that can fulfill a KDD task as if the whole data is used. Instance selection is directly related to data reduction and becomes increasingly important in many KDD applications due to the need for processing efficiency and/or storage efficiency. One of the major means of instance selection is sampling whereby a sample is selected for testing and analysis, and randomness is a key element in the process. Instance selection also covers methods that require search. Examples can be found in density estimation (finding the representative instances - data points - for a cluster); boundary hunting (finding the critical instances to form boundaries to differentiate data points of different classes); and data squashing (producing weighted new data with equivalent sufficient statistics). Other important issues related to instance selection extend to unwanted precision, focusing, concept drifts, noise/outlier removal, data smoothing, etc. Instance Selection and Construction for Data Mining brings researchers and practitioners together to report new developments and applications, to share hard-learned experiences in order to avoid similar pitfalls, and to shed light on the future development of instance selection. This volume serves as a comprehensive reference for graduate students, practitioners and researchers in KDD.
Publisher: Springer Science & Business Media
ISBN: 1475733593
Category : Computers
Languages : en
Pages : 433
Book Description
The ability to analyze and understand massive data sets lags far behind the ability to gather and store the data. To meet this challenge, knowledge discovery and data mining (KDD) is growing rapidly as an emerging field. However, no matter how powerful computers are now or will be in the future, KDD researchers and practitioners must consider how to manage ever-growing data which is, ironically, due to the extensive use of computers and ease of data collection with computers. Many different approaches have been used to address the data explosion issue, such as algorithm scale-up and data reduction. Instance, example, or tuple selection pertains to methods or algorithms that select or search for a representative portion of data that can fulfill a KDD task as if the whole data is used. Instance selection is directly related to data reduction and becomes increasingly important in many KDD applications due to the need for processing efficiency and/or storage efficiency. One of the major means of instance selection is sampling whereby a sample is selected for testing and analysis, and randomness is a key element in the process. Instance selection also covers methods that require search. Examples can be found in density estimation (finding the representative instances - data points - for a cluster); boundary hunting (finding the critical instances to form boundaries to differentiate data points of different classes); and data squashing (producing weighted new data with equivalent sufficient statistics). Other important issues related to instance selection extend to unwanted precision, focusing, concept drifts, noise/outlier removal, data smoothing, etc. Instance Selection and Construction for Data Mining brings researchers and practitioners together to report new developments and applications, to share hard-learned experiences in order to avoid similar pitfalls, and to shed light on the future development of instance selection. This volume serves as a comprehensive reference for graduate students, practitioners and researchers in KDD.
Encyclopedia of Data Warehousing and Mining
Author: Wang, John
Publisher: IGI Global
ISBN: 1591405599
Category : Computers
Languages : en
Pages : 1312
Book Description
Data Warehousing and Mining (DWM) is the science of managing and analyzing large datasets and discovering novel patterns and in recent years has emerged as a particularly exciting and industrially relevant area of research. Prodigious amounts of data are now being generated in domains as diverse as market research, functional genomics and pharmaceuticals; intelligently analyzing these data, with the aim of answering crucial questions and helping make informed decisions, is the challenge that lies ahead. The Encyclopedia of Data Warehousing and Mining provides a comprehensive, critical and descriptive examination of concepts, issues, trends, and challenges in this rapidly expanding field of data warehousing and mining (DWM). This encyclopedia consists of more than 350 contributors from 32 countries, 1,800 terms and definitions, and more than 4,400 references. This authoritative publication offers in-depth coverage of evolutions, theories, methodologies, functionalities, and applications of DWM in such interdisciplinary industries as healthcare informatics, artificial intelligence, financial modeling, and applied statistics, making it a single source of knowledge and latest discoveries in the field of DWM.
Publisher: IGI Global
ISBN: 1591405599
Category : Computers
Languages : en
Pages : 1312
Book Description
Data Warehousing and Mining (DWM) is the science of managing and analyzing large datasets and discovering novel patterns and in recent years has emerged as a particularly exciting and industrially relevant area of research. Prodigious amounts of data are now being generated in domains as diverse as market research, functional genomics and pharmaceuticals; intelligently analyzing these data, with the aim of answering crucial questions and helping make informed decisions, is the challenge that lies ahead. The Encyclopedia of Data Warehousing and Mining provides a comprehensive, critical and descriptive examination of concepts, issues, trends, and challenges in this rapidly expanding field of data warehousing and mining (DWM). This encyclopedia consists of more than 350 contributors from 32 countries, 1,800 terms and definitions, and more than 4,400 references. This authoritative publication offers in-depth coverage of evolutions, theories, methodologies, functionalities, and applications of DWM in such interdisciplinary industries as healthcare informatics, artificial intelligence, financial modeling, and applied statistics, making it a single source of knowledge and latest discoveries in the field of DWM.
Soft Computing: Methodologies and Applications
Author: Frank Hoffmann
Publisher: Springer Science & Business Media
ISBN: 3540324003
Category : Computers
Languages : en
Pages : 340
Book Description
The series of Online World Conferences on Soft Computing (WSC) is organized by the World Federation of Soft Computing (WFSC) and has become an established annual event in the academic calendar and was already held for the 8th time in 2003. Starting as a small workshop held at Nagoya University, Japan in 1994 it has - tured to the premier online event on soft computing in industrial applications. It has been hosted by the universities of Granada, Spain, Fraunhofer Gesellschaft, Berlin, Cran?eld University, Helsinki University of Technology and Nagoya University. The goal of WFSC is to promote soft computing across the world, by using the internet as a forum for virtual technical discussion and publishing at no cost to authors and participants. The of?cial journal of the World Federation on Soft Computing is the journal Applied Soft Computing. The 8th WSC Conference (WSC8) took place from September 29th to October 10th, 2003. Registered participants had the opportunity to follow and discuss the online presentations of authors from all over the world. Out of more than 60 subm- sions the program committee had accepted 27 papers for ?nal presentation at WSC8.
Publisher: Springer Science & Business Media
ISBN: 3540324003
Category : Computers
Languages : en
Pages : 340
Book Description
The series of Online World Conferences on Soft Computing (WSC) is organized by the World Federation of Soft Computing (WFSC) and has become an established annual event in the academic calendar and was already held for the 8th time in 2003. Starting as a small workshop held at Nagoya University, Japan in 1994 it has - tured to the premier online event on soft computing in industrial applications. It has been hosted by the universities of Granada, Spain, Fraunhofer Gesellschaft, Berlin, Cran?eld University, Helsinki University of Technology and Nagoya University. The goal of WFSC is to promote soft computing across the world, by using the internet as a forum for virtual technical discussion and publishing at no cost to authors and participants. The of?cial journal of the World Federation on Soft Computing is the journal Applied Soft Computing. The 8th WSC Conference (WSC8) took place from September 29th to October 10th, 2003. Registered participants had the opportunity to follow and discuss the online presentations of authors from all over the world. Out of more than 60 subm- sions the program committee had accepted 27 papers for ?nal presentation at WSC8.
Evolutionary Computation in Data Mining
Author: Ashish Ghosh
Publisher: Springer
ISBN: 3540323589
Category : Computers
Languages : en
Pages : 279
Book Description
Data mining (DM) consists of extracting interesting knowledge from re- world, large & complex data sets; and is the core step of a broader process, called the knowledge discovery from databases (KDD) process. In addition to the DM step, which actually extracts knowledge from data, the KDD process includes several preprocessing (or data preparation) and post-processing (or knowledge refinement) steps. The goal of data preprocessing methods is to transform the data to facilitate the application of a (or several) given DM algorithm(s), whereas the goal of knowledge refinement methods is to validate and refine discovered knowledge. Ideally, discovered knowledge should be not only accurate, but also comprehensible and interesting to the user. The total process is highly computation intensive. The idea of automatically discovering knowledge from databases is a very attractive and challenging task, both for academia and for industry. Hence, there has been a growing interest in data mining in several AI-related areas, including evolutionary algorithms (EAs). The main motivation for applying EAs to KDD tasks is that they are robust and adaptive search methods, which perform a global search in the space of candidate solutions (for instance, rules or another form of knowledge representation).
Publisher: Springer
ISBN: 3540323589
Category : Computers
Languages : en
Pages : 279
Book Description
Data mining (DM) consists of extracting interesting knowledge from re- world, large & complex data sets; and is the core step of a broader process, called the knowledge discovery from databases (KDD) process. In addition to the DM step, which actually extracts knowledge from data, the KDD process includes several preprocessing (or data preparation) and post-processing (or knowledge refinement) steps. The goal of data preprocessing methods is to transform the data to facilitate the application of a (or several) given DM algorithm(s), whereas the goal of knowledge refinement methods is to validate and refine discovered knowledge. Ideally, discovered knowledge should be not only accurate, but also comprehensible and interesting to the user. The total process is highly computation intensive. The idea of automatically discovering knowledge from databases is a very attractive and challenging task, both for academia and for industry. Hence, there has been a growing interest in data mining in several AI-related areas, including evolutionary algorithms (EAs). The main motivation for applying EAs to KDD tasks is that they are robust and adaptive search methods, which perform a global search in the space of candidate solutions (for instance, rules or another form of knowledge representation).
Advances in Data Mining. Applications and Theoretical Aspects
Author: Petra Perner
Publisher: Springer
ISBN: 3319415611
Category : Computers
Languages : en
Pages : 456
Book Description
This book constitutes the refereed proceedings of the 16th Industrial Conference on Advances in Data Mining, ICDM 2016, held in New York, NY, USA, in July 2016. The 33 revised full papers presented were carefully reviewed and selected from 100 submissions. The topics range from theoretical aspects of data mining to applications of data mining, such as in multimedia data, in marketing, in medicine, and in process control, industry, and society.
Publisher: Springer
ISBN: 3319415611
Category : Computers
Languages : en
Pages : 456
Book Description
This book constitutes the refereed proceedings of the 16th Industrial Conference on Advances in Data Mining, ICDM 2016, held in New York, NY, USA, in July 2016. The 33 revised full papers presented were carefully reviewed and selected from 100 submissions. The topics range from theoretical aspects of data mining to applications of data mining, such as in multimedia data, in marketing, in medicine, and in process control, industry, and society.
Data Preprocessing in Data Mining
Author: Salvador GarcĂa
Publisher: Springer
ISBN: 3319102478
Category : Technology & Engineering
Languages : en
Pages : 327
Book Description
Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data. This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering.
Publisher: Springer
ISBN: 3319102478
Category : Technology & Engineering
Languages : en
Pages : 327
Book Description
Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data. This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering.
Artificial Intelligence Perspectives in Intelligent Systems
Author: Radek Silhavy
Publisher: Springer
ISBN: 3319336258
Category : Technology & Engineering
Languages : en
Pages : 523
Book Description
This volume is based on the research papers presented in the 5th Computer Science On-line Conference. The volume Artificial Intelligence Perspectives in Intelligent Systems presents modern trends and methods to real-world problems, and in particular, exploratory research that describes novel approaches in the field of artificial intelligence. New algorithms in a variety of fields are also presented. The Computer Science On-line Conference (CSOC 2016) is intended to provide an international forum for discussions on the latest research results in all areas related to Computer Science. The addressed topics are the theoretical aspects and applications of Computer Science, Artificial Intelligences, Cybernetics, Automation Control Theory and Software Engineering.
Publisher: Springer
ISBN: 3319336258
Category : Technology & Engineering
Languages : en
Pages : 523
Book Description
This volume is based on the research papers presented in the 5th Computer Science On-line Conference. The volume Artificial Intelligence Perspectives in Intelligent Systems presents modern trends and methods to real-world problems, and in particular, exploratory research that describes novel approaches in the field of artificial intelligence. New algorithms in a variety of fields are also presented. The Computer Science On-line Conference (CSOC 2016) is intended to provide an international forum for discussions on the latest research results in all areas related to Computer Science. The addressed topics are the theoretical aspects and applications of Computer Science, Artificial Intelligences, Cybernetics, Automation Control Theory and Software Engineering.
Artificial Neural Networks in Pattern Recognition
Author: Nadia Mana
Publisher: Springer
ISBN: 3642332129
Category : Computers
Languages : en
Pages : 253
Book Description
This book constitutes the refereed proceedings of the 5th INNS IAPR TC3 GIRPR International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2012, held in Trento, Italy, in September 2012. The 21 revised full papers presented were carefully reviewed and selected for inclusion in this volume. They cover a large range of topics in the field of neural network- and machine learning-based pattern recognition presenting and discussing the latest research, results, and ideas in these areas.
Publisher: Springer
ISBN: 3642332129
Category : Computers
Languages : en
Pages : 253
Book Description
This book constitutes the refereed proceedings of the 5th INNS IAPR TC3 GIRPR International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2012, held in Trento, Italy, in September 2012. The 21 revised full papers presented were carefully reviewed and selected for inclusion in this volume. They cover a large range of topics in the field of neural network- and machine learning-based pattern recognition presenting and discussing the latest research, results, and ideas in these areas.
Pattern Detection and Discovery
Author: David J Hand
Publisher: Springer
ISBN: 3540457283
Category : Computers
Languages : en
Pages : 239
Book Description
The collation of large electronic databases of scienti?c and commercial infor- tion has led to a dramatic growth of interest in methods for discovering struc- res in such databases. These methods often go under the general name of data mining. One important subdiscipline within data mining is concerned with the identi?cation and detection of anomalous, interesting, unusual, or valuable - cords or groups of records, which we call patterns. Familiar examples are the detection of fraud in credit-card transactions, of particular coincident purchases in supermarket transactions, of important nucleotide sequences in gene sequence analysis, and of characteristic traces in EEG records. Tools for the detection of such patterns have been developed within the data mining community, but also within other research communities, typically without an awareness that the - sic problem was common to many disciplines. This is not unreasonable: each of these disciplines has a large literature of its own, and a literature which is growing rapidly. Keeping up with any one of these is di?cult enough, let alone keeping up with others as well, which may in any case be couched in an - familiar technical language. But, of course, this means that opportunities are being lost, discoveries relating to the common problem made in one area are not transferred to the other area, and breakthroughs and problem solutions are being rediscovered, or not discovered for a long time, meaning that e?ort is being wasted and opportunities may be lost.
Publisher: Springer
ISBN: 3540457283
Category : Computers
Languages : en
Pages : 239
Book Description
The collation of large electronic databases of scienti?c and commercial infor- tion has led to a dramatic growth of interest in methods for discovering struc- res in such databases. These methods often go under the general name of data mining. One important subdiscipline within data mining is concerned with the identi?cation and detection of anomalous, interesting, unusual, or valuable - cords or groups of records, which we call patterns. Familiar examples are the detection of fraud in credit-card transactions, of particular coincident purchases in supermarket transactions, of important nucleotide sequences in gene sequence analysis, and of characteristic traces in EEG records. Tools for the detection of such patterns have been developed within the data mining community, but also within other research communities, typically without an awareness that the - sic problem was common to many disciplines. This is not unreasonable: each of these disciplines has a large literature of its own, and a literature which is growing rapidly. Keeping up with any one of these is di?cult enough, let alone keeping up with others as well, which may in any case be couched in an - familiar technical language. But, of course, this means that opportunities are being lost, discoveries relating to the common problem made in one area are not transferred to the other area, and breakthroughs and problem solutions are being rediscovered, or not discovered for a long time, meaning that e?ort is being wasted and opportunities may be lost.
Computational Collective Intelligence
Author: Ngoc-Thanh Nguyen
Publisher: Springer
ISBN: 3319452436
Category : Computers
Languages : en
Pages : 620
Book Description
This two-volume set (LNAI 9875 and LNAI 9876) constitutes the refereed proceedings of the 8th International Conference on Collective Intelligence, ICCCI 2016, held in Halkidiki, Greece, in September 2016. The 108 full papers presented were carefully reviewed and selected from 277 submissions. The aim of this conference is to provide an internationally respected forum for scientific research in the computer-based methods of collective intelligence and their applications in (but not limited to) such fields as group decision making, consensus computing, knowledge integration, semantic web, social networks and multi-agent systems.
Publisher: Springer
ISBN: 3319452436
Category : Computers
Languages : en
Pages : 620
Book Description
This two-volume set (LNAI 9875 and LNAI 9876) constitutes the refereed proceedings of the 8th International Conference on Collective Intelligence, ICCCI 2016, held in Halkidiki, Greece, in September 2016. The 108 full papers presented were carefully reviewed and selected from 277 submissions. The aim of this conference is to provide an internationally respected forum for scientific research in the computer-based methods of collective intelligence and their applications in (but not limited to) such fields as group decision making, consensus computing, knowledge integration, semantic web, social networks and multi-agent systems.