Insight Into Enhanced Biological Phosphorus Removal (Ebpr) System

Insight Into Enhanced Biological Phosphorus Removal (Ebpr) System PDF Author: Hasfalina Che Man
Publisher: LAP Lambert Academic Publishing
ISBN: 9783843381048
Category :
Languages : en
Pages : 96

Get Book Here

Book Description
This book is written to a fairly advanced level and should be interest to the graduate, postgraduate and scientists dealing with biological wastewater treatment especially relevant to phosphorus removal from wastewater. Though there are many excellent textbooks that elucidate the theory and design of biological wastewater treatment such as EBPR, it was nevertheless felt that there was a need for another book that would not only describe with the design approach but also cover the microbiological analysis related to the EBPR system.Chapters have been organized to address basic concepts related to the needs for biological treatment and design fundamentals of EBPR. It also covers the factors influencing the EBPR and types of reactors most commonly used. The final part involves the molecular methods used to study the polyphosphate-accumulating organisms (PAO) related to EBPR. It is hoped that this book will be referred by those related in engineering, environmentalists, government and regulatory bodies.

Insight Into Enhanced Biological Phosphorus Removal (Ebpr) System

Insight Into Enhanced Biological Phosphorus Removal (Ebpr) System PDF Author: Hasfalina Che Man
Publisher: LAP Lambert Academic Publishing
ISBN: 9783843381048
Category :
Languages : en
Pages : 96

Get Book Here

Book Description
This book is written to a fairly advanced level and should be interest to the graduate, postgraduate and scientists dealing with biological wastewater treatment especially relevant to phosphorus removal from wastewater. Though there are many excellent textbooks that elucidate the theory and design of biological wastewater treatment such as EBPR, it was nevertheless felt that there was a need for another book that would not only describe with the design approach but also cover the microbiological analysis related to the EBPR system.Chapters have been organized to address basic concepts related to the needs for biological treatment and design fundamentals of EBPR. It also covers the factors influencing the EBPR and types of reactors most commonly used. The final part involves the molecular methods used to study the polyphosphate-accumulating organisms (PAO) related to EBPR. It is hoped that this book will be referred by those related in engineering, environmentalists, government and regulatory bodies.

Biological Phosphorus Removal

Biological Phosphorus Removal PDF Author: P. M. J. Janssen
Publisher: IWA Publishing
ISBN: 9781843390121
Category : Science
Languages : en
Pages : 228

Get Book Here

Book Description
Biological phosphorus (bio-P) removal has become a reliable and well-understood process within wastewater treatment, despite being one of the most complex processes in the activated sludge process. Extended fundamental and full-scale research has been carried out into the bio-P process and the state-of-the-art is described in this report. A summarising historical overview gives insight into the establishment of the appropriate microbiological and biochemical basis of the process and the development of bio-P configurations in practice. Aspects of the bio-P process that have a direct influence on the efficiency of phosphorus removal are subjected to an in-depth investigation. This report presents guidelines for design and dimensioning in order to introduce and/or optimise the bio-P process in practice. Twelve bio-P installations are extensively described and the operational results and experiences are related to existing bio-P knowledge and guidelines. Based on a number of parameters, a comparison is made between the described bio-P plants. A steady state model is verified with extensive periods of practical experience of the plants. The bio-P model, which is provided on CD-ROM (available for download here), offers a reliable insight into the bio-P process, coupled with sensitivity analyses regarding wastewater characteristics and process parameters for the anaerobic volume and the P-ortho concentration in the final effluent. The report ends with a systematic approach to the design of the bio-P process, based on the background of the bio-P process itself, much practical experience and the analysis of operational bio-P plants. Also presented is a systematic approach to tackle operational aspects of the bio-P process in order to generate an acceptable low P effluent concentration. This optimisation of the bio-P process operation is supported by a decision diagram. Biological Phosphorus Removal will be an invaluable source of information for all those concerned with wastewater treatment, including plant managers, process designers, consultants and researchers.

Enhanced Biological Phosphorus Removal

Enhanced Biological Phosphorus Removal PDF Author: Taylor & Francis Group
Publisher:
ISBN: 9781138373433
Category :
Languages : en
Pages :

Get Book Here

Book Description


Experimental Study and Mathematical Modeling of Enhanced Biological Phosphorus Removal Based on Aeration Effects

Experimental Study and Mathematical Modeling of Enhanced Biological Phosphorus Removal Based on Aeration Effects PDF Author: Parnian Izadi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Enhanced Biological Phosphorus Removal (EBPR), as a promising technology, has been implemented in many wastewater treatment plants (WWTP) worldwide, with high efficiency in phosphorus removal performance. In a well-operated EBPR, lower operational cost, reduced sludge production, and lower environmental impacts are achievable. Yet, with the proven capability of EBPR in efficient phosphorus removal, disturbance and periods of unexplained insufficient phosphorus removal have been detected in real WWTP in different cases due to loss of PAO biomass under presumed favorable conditions for EBPR. These complications may lead to process upset, system failure, and violation of discharge regulations. Disruption in process performance may originate from several external factors such as heavy rainfall, excessive nitrate loading to the anaerobic reactor, excessive aeration of activated sludge, or it may be a result of PAOs competition with other groups of microorganisms such as glycogen accumulating organisms (GAO). Therefore, the key in reaching low P-effluent levels is to optimize the operation and minimize the effect of inefficient factors. This Ph.D. study has focused on aeration as a crucial operational factor in the EBPR process in sequential batch reactor (SBR) systems. EBPR aerobic P-uptake, anaerobic P-release, and carbon storage of phosphorus accumulating organisms (PAOs) are closely related to oxygen mass transfer. The study is oriented to different aspects of aeration, addressing aeration concentration (dissolved oxygen (DO) concentration), aeration duration (aerobic hydraulic retention time (HRT)), and aeration pattern (continuous/intermittent). The performance of EBPR in SBRs under various aeration strategies was investigated for different DO concentrations (0.4-4 mg/L), HRT (120-320 minute), and aeration patterns of continuous and intermittent (25 to 50 minute on/off intermittent aeration/non-aeration intervals). Moreover, this study investigated the effect of reaching micro-aeration with adaptation strategies on EBPR performance. The development of steady and instant-DO reduction in different aeration strategies was studied in batch tests with enriched PAOs at different DO levels. Subsequently, comparative modeling using calibrated BioWin software was implemented for SBRs to predict the nutrient removal performance by changing DO concentration and the aerobic-HRT and understanding the effect of parameters on treatment performance to improve operation and control.

Biological Phosphorus Removal Activated Sludge Process in Warm Climates

Biological Phosphorus Removal Activated Sludge Process in Warm Climates PDF Author: Cao Ye Shi
Publisher: IWA Publishing
ISBN: 1843393816
Category : Science
Languages : en
Pages : 151

Get Book Here

Book Description
Special Offer: Cao Ye Shi Author Set - Buy all three books together and save a total £76! Biological Phosphorus Removal Activated Sludge Process in Warm Climates presents the results of detailed research on the Enhanced Biological Phosphorus Removal (EBPR) activated sludge process under warm climate conditions (20oC - 30oC), which is part of the R & D program of Public Utilities Board (PUB) Singapore. The investigations and studies presented in this book are application-oriented, but at the same time the studies aim at an insightful understanding of the EBPR with the knowledge of the latest development in academic field. The focus points are: EBPR performance of laboratory-scale and full-scale activated sludge processes under the site conditions in warm climates The carbon competition and distribution between PAO and GAO (and denitrifiers) in the process The stoichiometry and kinetics of P-release, COD uptake in the anaerobic environment and P-uptake in the aerobic environment under different temperatures and operating conditions PAO and GAO population fractions, shift and dominance studies using FISH and batch tests The inter-relationships between the system performance, process design and the microbial community EBPR for industrial wastewater (high ratio of feed COD/P) treatment under warm climates. Together with the preceding book – Biological Nitrogen Removal Activated Sludge Process in Warm Climates – published by IWA in 2008, this book fills the gap of biological nutrient (nitrogen and phosphorus) removal in warm climates and provides unique experiences and knowledge for Process and design researchers and engineers in wastewater research, students and academic staff in Civil/Sanitation/Environment Departments, as well as Managers, Engineers and Consultants in water companies and water utilities. Visit the IWA WaterWiki to read and share material related to this title: http://www.iwawaterwiki.org/xwiki/bin/view/Articles/SELECTIONOFDOMESTICWASTEWATERTREATMENTSYSTEMSINWARMCLIMATEREGIONS

Development of Low Energy Aeration System For Enhanced Biological Phosphorus Removal (EBPR).

Development of Low Energy Aeration System For Enhanced Biological Phosphorus Removal (EBPR). PDF Author: Mahmoud Amr Mansour
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
In a world that is witnessing an everlasting growth and accelerating increase in its population, an increase in the amount of wastewater produced is inevitable. In order to recycle this wastewater back to the environment, all nutrients should be removed. Unfortunately, removing the nutrients from wastewater is expensive due to the oxygen and chemicals requirement. Phosphorus removal is an important part of wastewater treatment process; Enhanced Biological Phosphorus Removal (EBPR) is one of the main processes responsible for phosphorus removal in wastewater treatment plants. EBPR consist of two major phases: anaerobic phase and aerobic phase. Aeration costs in the aerobic phase are relatively high in EBPR system. Finding a new approach for decreasing the amount of aeration needed for EBPR systems recently has grown in importance. Most of the research done on EBPR process was focusing on continued aeration, the effect of intermittent aeration is not widely researched. Thus, this research aims to overcome the previously mentioned challenges towards achieving stable EBPR process through different optimization techniques. To achieve this goal, a new aeration strategy has been developed to stepwise decrease the dissolved oxygen (DO) to reach very low DO conditions for EBPR. The new strategy depends on using intermittent aeration as a method of providing DO to the system. The SBR was operated over the span of 140 days under very low DO concentrations ranged from 0.5-1.0 mg/L, and achieved stable nutrients removal with removal efficiencies of: phosphorus removal efficiency (99%), ammonia removal efficiency (99%), COD removal Efficiency (100%). In addition, the effect of acetate to propionate ratio as a carbon source for EBPR systems under low DO concentrations have been studied, to investigate the effect of carbon source on the competition between Glycogen Accumulating Organism (GAO) and Polyphosphate Accumulating Organism (PAO) in EBPR systems. Propionate was found to be the best carbon source for EBPR process, after different compositions of COD were used as a carbon source for the EBPR process. The combination of low DO concentrations and propionate as a carbon source has been found to be a successful approach in controlling the competition between GAO and PAO in EBPR systems.

Effect of Sulphide on Enhanced Biological Phosphorus Removal

Effect of Sulphide on Enhanced Biological Phosphorus Removal PDF Author: Francisco Javier Rubio Rincon
Publisher: CRC Press
ISBN: 1351652710
Category : Technology & Engineering
Languages : en
Pages : 210

Get Book Here

Book Description
The enhanced biological removal of phosphorus (EBPR) is a popular process due to high removal efficiency, low operational costs, and the possibility of phosphorus recovery. Nevertheless, the stability of the EBPR depends on different factors such as: temperature, pH, and the presence of toxic compounds. While extensive studies have researched the effects of temperature and pH on EBPR systems, little is known about the effects of different toxic compounds on EBPR. For example, sulphide has shown to inhibit different microbial activities in the WWTP, but the knowledge about its effects on EBPR is limited. Whereas the sulphide generated in the sewage can cause a shock effect on EBPR, the continuously exposure to sulphide potentially generated in WWTP can cause the acclimatization and adaptation of the biomass. This research suggests that sulphate reducing bacteria can proliferate in WWTP, as they are reversibly inhibited by the recirculation of sludge through anaerobic-anoxic-oxic conditions. The research enhances the understanding of the effect of sulphide on the anaerobic-oxic metabolism of PAO. It suggests that the filamentous bacteria Thiothrix caldifontis could play an important role in the biological removal of phosphorus. It questions the ability of PAO to generate energy from nitrate respiration and its use for the anoxic phosphorus uptake. Thus, the results obtained in this research can be used to understand the stability of the EBPR process under anaerobic-anoxic-oxic conditions, especially when exposed to the presence of sulphide.

Biological Removal of Phosphorus and Nitrogen from Wastewater

Biological Removal of Phosphorus and Nitrogen from Wastewater PDF Author: Yanping Mao
Publisher:
ISBN: 9781361385487
Category :
Languages : en
Pages :

Get Book Here

Book Description
This dissertation, "Biological Removal of Phosphorus and Nitrogen From Wastewater: New Insights From Metagenomic and Metatranscriptomic Approaches" by Yanping, Mao, 毛艷萍, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: The study was conducted to reveal the insights of microbial diversity, functional profile and gene expression of microorganisms responsible for enhanced biological phosphorus removal (EBPR) and hydrogen-oxidizing autotrophic denitrification mainly by using metagenomic and metatranscriptomic analysis based on high-throughput sequencing. Two sequencing batch reactors (SBRs) were operated to remove phosphorus (15 mg/L) from synthetic wastewater. The integrated metagenomic and metatranscriptomic approaches were adopted to retrieve a nearly complete draft genome of Candidatus Accumulibacter phosphatis (referred to Accumulibacter) in Clade IB (CAP IB HKU-1) from one of the SBRs treating saline wastewater. The CAP IB HKU-1 draft genome, being different from CAP IIA UW-1, does not possess the phosphotransferase in polyphosphate metabolism and V-ATPase for orthophosphate transport. Additionally, unlike CAP IA UW-2, CAP IB HKU-1 carries the genes for carbon fixation and nitrogen fixation. The metatranscriptomic results revealed that the most significantly up-regulated genes in CAP IB HKU-1 from the anaerobic to the aerobic phase were responsible for assimilatory sulfate reduction, genetic information processing and phosphorous absorption, while the down-regulated genes were involved in N2O reduction, PHA synthesis and acetyl-CoA formation. From another SBR, a draft genome affiliated to Accumulibacter Clade IIC (CAP IIC HKU-2) was reconstructed using two metagenomic sequence data sets. Comparative genomic analysis demonstrated that Accumulibacter of Clades IA, IB, IIA and IIC conserved the genes encoding for enzymes in glycolysis, the TCA cycle, acetate uptake, PHA synthesis and polyP metabolism, but differed in the abilities of nitrate reduction, nitrogen fixation and carbon fixation. The abundances of the Accumulibacter clades in 18 activated sludge (AS) samples from the globally distributed sewage treatment plants (STPs) were quantified by the qPCR-ppk1 assay. Clades IIC and IID were found to be dominant among the five Accumulibacter clades in 11 AS samples. And two novel Accumulibacter Clades IIH and II-I were identified. The results indicated that the wastewater characteristics could be more important to determine the proliferation of Accumulibacter clades in STP AS systems rather than the geographic location. Geographical distribution of putative polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) among 14 globally located STPs and their monthly microbial variation in AS of Sha-Tin STP over five years were studied by using 16S rRNA gene pyrosequencing. The structure of EBPR-related microbial community should be the result of interaction of multiple operational variables and wastewater characteristics. Thauera-dominated (with relative abundances of 47% - 62%) microbial communities carrying out hydrogenotrophic denitrification were successfully enriched from various seed sludges and characterized by 16S rRNA gene Illumina high-throughput sequencing. Nitrogen removal rates of the enriched culture were comparable to that of the model organism Paracoccus denitrificans. A genome binning pipeline was proposed to retrieve the dominant genome from an enriched hydrogenotrophic denitrifying consortium using metagenomic sequence data. A draft genome (Thauera R4) affiliated with a novel Thauera

Identification of Polyphosphate-accumulating Organism Candidates in Enhanced Biological Phosphorus Removal (EBPR) System by Density Separation and Molecular Methods

Identification of Polyphosphate-accumulating Organism Candidates in Enhanced Biological Phosphorus Removal (EBPR) System by Density Separation and Molecular Methods PDF Author: Dingding An
Publisher:
ISBN:
Category : Sewage
Languages : en
Pages : 200

Get Book Here

Book Description


Implementing Enhanced Biological Phosphorous Removal in High Strength Wastewater

Implementing Enhanced Biological Phosphorous Removal in High Strength Wastewater PDF Author: Chang Hoon Ahn
Publisher:
ISBN:
Category :
Languages : en
Pages : 302

Get Book Here

Book Description