Author: Gregory J. Chaitin
Publisher: World Scientific
ISBN: 9789810201715
Category : Mathematics
Languages : en
Pages : 332
Book Description
This book contains in easily accessible form all the main ideas of the creator and principal architect of algorithmic information theory. This expanded second edition has added thirteen abstracts, a 1988 Scientific American Article, a transcript of a EUROPALIA 89 lecture, an essay on biology, and an extensive bibliography. Its new larger format makes it easier to read. Chaitin's ideas are a fundamental extension of those of Gdel and Turning and have exploded some basic assumptions of mathematics and thrown new light on the scientific method, epistemology, probability theory, and of course computer science and information theory.
Information, Randomness & Incompleteness
Author: Gregory J. Chaitin
Publisher: World Scientific
ISBN: 9789810201715
Category : Mathematics
Languages : en
Pages : 332
Book Description
This book contains in easily accessible form all the main ideas of the creator and principal architect of algorithmic information theory. This expanded second edition has added thirteen abstracts, a 1988 Scientific American Article, a transcript of a EUROPALIA 89 lecture, an essay on biology, and an extensive bibliography. Its new larger format makes it easier to read. Chaitin's ideas are a fundamental extension of those of Gdel and Turning and have exploded some basic assumptions of mathematics and thrown new light on the scientific method, epistemology, probability theory, and of course computer science and information theory.
Publisher: World Scientific
ISBN: 9789810201715
Category : Mathematics
Languages : en
Pages : 332
Book Description
This book contains in easily accessible form all the main ideas of the creator and principal architect of algorithmic information theory. This expanded second edition has added thirteen abstracts, a 1988 Scientific American Article, a transcript of a EUROPALIA 89 lecture, an essay on biology, and an extensive bibliography. Its new larger format makes it easier to read. Chaitin's ideas are a fundamental extension of those of Gdel and Turning and have exploded some basic assumptions of mathematics and thrown new light on the scientific method, epistemology, probability theory, and of course computer science and information theory.
Information and Randomness
Author: Cristian Calude
Publisher: Springer Science & Business Media
ISBN: 3662030497
Category : Mathematics
Languages : en
Pages : 252
Book Description
"Algorithmic information theory (AIT) is the result of putting Shannon's information theory and Turing's computability theory into a cocktail shaker and shaking vigorously", says G.J. Chaitin, one of the fathers of this theory of complexity and randomness, which is also known as Kolmogorov complexity. It is relevant for logic (new light is shed on Gödel's incompleteness results), physics (chaotic motion), biology (how likely is life to appear and evolve?), and metaphysics (how ordered is the universe?). This book, benefiting from the author's research and teaching experience in Algorithmic Information Theory (AIT), should help to make the detailed mathematical techniques of AIT accessible to a much wider audience.
Publisher: Springer Science & Business Media
ISBN: 3662030497
Category : Mathematics
Languages : en
Pages : 252
Book Description
"Algorithmic information theory (AIT) is the result of putting Shannon's information theory and Turing's computability theory into a cocktail shaker and shaking vigorously", says G.J. Chaitin, one of the fathers of this theory of complexity and randomness, which is also known as Kolmogorov complexity. It is relevant for logic (new light is shed on Gödel's incompleteness results), physics (chaotic motion), biology (how likely is life to appear and evolve?), and metaphysics (how ordered is the universe?). This book, benefiting from the author's research and teaching experience in Algorithmic Information Theory (AIT), should help to make the detailed mathematical techniques of AIT accessible to a much wider audience.
Randomness & Undecidability in Physics
Author: Karl Svozil
Publisher: World Scientific
ISBN: 9789810208097
Category : Science
Languages : en
Pages : 314
Book Description
Recent findings in the computer sciences, discrete mathematics, formal logics and metamathematics have opened up a royal road for the investigation of undecidability and randomness in physics. A translation of these formal concepts yields a fresh look into diverse features of physical modelling such as quantum complementarity and the measurement problem, but also stipulates questions related to the necessity of the assumption of continua.Conversely, any computer may be perceived as a physical system: not only in the immediate sense of the physical properties of its hardware. Computers are a medium to virtual realities. The foreseeable importance of such virtual realities stimulates the investigation of an ?inner description?, a ?virtual physics? of these universes of computation. Indeed, one may consider our own universe as just one particular realisation of an enormous number of virtual realities, most of them awaiting discovery.One motive of this book is the recognition that what is often referred to as ?randomness? in physics might actually be a signature of undecidability for systems whose evolution is computable on a step-by-step basis. To give a flavour of the type of questions envisaged: Consider an arbitrary algorithmic system which is computable on a step-by-step basis. Then it is in general impossible to specify a second algorithmic procedure, including itself, which, by experimental input-output analysis, is capable of finding the deterministic law of the first system. But even if such a law is specified beforehand, it is in general impossible to predict the system behaviour in the ?distant future?. In other words: no ?speedup? or ?computational shortcut? is available. In this approach, classical paradoxes can be formally translated into no-go theorems concerning intrinsic physical perception.It is suggested that complementarity can be modelled by experiments on finite automata, where measurements of one observable of the automaton destroys the possibility to measure another observable of the same automaton and it vice versa.Besides undecidability, a great part of the book is dedicated to a formal definition of randomness and entropy measures based on algorithmic information theory.
Publisher: World Scientific
ISBN: 9789810208097
Category : Science
Languages : en
Pages : 314
Book Description
Recent findings in the computer sciences, discrete mathematics, formal logics and metamathematics have opened up a royal road for the investigation of undecidability and randomness in physics. A translation of these formal concepts yields a fresh look into diverse features of physical modelling such as quantum complementarity and the measurement problem, but also stipulates questions related to the necessity of the assumption of continua.Conversely, any computer may be perceived as a physical system: not only in the immediate sense of the physical properties of its hardware. Computers are a medium to virtual realities. The foreseeable importance of such virtual realities stimulates the investigation of an ?inner description?, a ?virtual physics? of these universes of computation. Indeed, one may consider our own universe as just one particular realisation of an enormous number of virtual realities, most of them awaiting discovery.One motive of this book is the recognition that what is often referred to as ?randomness? in physics might actually be a signature of undecidability for systems whose evolution is computable on a step-by-step basis. To give a flavour of the type of questions envisaged: Consider an arbitrary algorithmic system which is computable on a step-by-step basis. Then it is in general impossible to specify a second algorithmic procedure, including itself, which, by experimental input-output analysis, is capable of finding the deterministic law of the first system. But even if such a law is specified beforehand, it is in general impossible to predict the system behaviour in the ?distant future?. In other words: no ?speedup? or ?computational shortcut? is available. In this approach, classical paradoxes can be formally translated into no-go theorems concerning intrinsic physical perception.It is suggested that complementarity can be modelled by experiments on finite automata, where measurements of one observable of the automaton destroys the possibility to measure another observable of the same automaton and it vice versa.Besides undecidability, a great part of the book is dedicated to a formal definition of randomness and entropy measures based on algorithmic information theory.
Information-theoretic Incompleteness
Author: Gregory J Chaitin
Publisher: World Scientific
ISBN: 9814505102
Category : Computers
Languages : en
Pages : 242
Book Description
In this mathematical autobiography, Gregory Chaitin presents a technical survey of his work and a nontechnical discussion of its significance. The volume is an essential companion to the earlier collection of Chaitin's papers Information, Randomness and Incompleteness, also published by World Scientific.The technical survey contains many new results, including a detailed discussion of LISP program size and new versions of Chaitin's most fundamental information-theoretic incompleteness theorems. The nontechnical part includes the lecture given by Chaitin in Gšdel's classroom at the University of Vienna, a transcript of a BBC TV interview, and articles from New Scientist, La Recherche, and the Mathematical Intelligencer.
Publisher: World Scientific
ISBN: 9814505102
Category : Computers
Languages : en
Pages : 242
Book Description
In this mathematical autobiography, Gregory Chaitin presents a technical survey of his work and a nontechnical discussion of its significance. The volume is an essential companion to the earlier collection of Chaitin's papers Information, Randomness and Incompleteness, also published by World Scientific.The technical survey contains many new results, including a detailed discussion of LISP program size and new versions of Chaitin's most fundamental information-theoretic incompleteness theorems. The nontechnical part includes the lecture given by Chaitin in Gšdel's classroom at the University of Vienna, a transcript of a BBC TV interview, and articles from New Scientist, La Recherche, and the Mathematical Intelligencer.
Thinking about Gdel and Turing
Author: Gregory J. Chaitin
Publisher: World Scientific
ISBN: 9812708952
Category : Mathematics
Languages : en
Pages : 368
Book Description
Dr Gregory Chaitin, one of the world's leading mathematicians, is best known for his discovery of the remarkable ê number, a concrete example of irreducible complexity in pure mathematics which shows that mathematics is infinitely complex. In this volume, Chaitin discusses the evolution of these ideas, tracing them back to Leibniz and Borel as well as Gdel and Turing.This book contains 23 non-technical papers by Chaitin, his favorite tutorial and survey papers, including Chaitin's three Scientific American articles. These essays summarize a lifetime effort to use the notion of program-size complexity or algorithmic information content in order to shed further light on the fundamental work of Gdel and Turing on the limits of mathematical methods, both in logic and in computation. Chaitin argues here that his information-theoretic approach to metamathematics suggests a quasi-empirical view of mathematics that emphasizes the similarities rather than the differences between mathematics and physics. He also develops his own brand of digital philosophy, which views the entire universe as a giant computation, and speculates that perhaps everything is discrete software, everything is 0's and 1's.Chaitin's fundamental mathematical work will be of interest to philosophers concerned with the limits of knowledge and to physicists interested in the nature of complexity.
Publisher: World Scientific
ISBN: 9812708952
Category : Mathematics
Languages : en
Pages : 368
Book Description
Dr Gregory Chaitin, one of the world's leading mathematicians, is best known for his discovery of the remarkable ê number, a concrete example of irreducible complexity in pure mathematics which shows that mathematics is infinitely complex. In this volume, Chaitin discusses the evolution of these ideas, tracing them back to Leibniz and Borel as well as Gdel and Turing.This book contains 23 non-technical papers by Chaitin, his favorite tutorial and survey papers, including Chaitin's three Scientific American articles. These essays summarize a lifetime effort to use the notion of program-size complexity or algorithmic information content in order to shed further light on the fundamental work of Gdel and Turing on the limits of mathematical methods, both in logic and in computation. Chaitin argues here that his information-theoretic approach to metamathematics suggests a quasi-empirical view of mathematics that emphasizes the similarities rather than the differences between mathematics and physics. He also develops his own brand of digital philosophy, which views the entire universe as a giant computation, and speculates that perhaps everything is discrete software, everything is 0's and 1's.Chaitin's fundamental mathematical work will be of interest to philosophers concerned with the limits of knowledge and to physicists interested in the nature of complexity.
Exploring RANDOMNESS
Author: Gregory J. Chaitin
Publisher: Springer Science & Business Media
ISBN: 1447103076
Category : Computers
Languages : en
Pages : 164
Book Description
This essential companion to Chaitin's successful books The Unknowable and The Limits of Mathematics, presents the technical core of his theory of program-size complexity. The two previous volumes are more concerned with applications to meta-mathematics. LISP is used to present the key algorithms and to enable computer users to interact with the authors proofs and discover for themselves how they work. The LISP code for this book is available at the author's Web site together with a Java applet LISP interpreter. "No one has looked deeper and farther into the abyss of randomness and its role in mathematics than Greg Chaitin. This book tells you everything hes seen. Don miss it." John Casti, Santa Fe Institute, Author of Goedel: A Life of Logic.'
Publisher: Springer Science & Business Media
ISBN: 1447103076
Category : Computers
Languages : en
Pages : 164
Book Description
This essential companion to Chaitin's successful books The Unknowable and The Limits of Mathematics, presents the technical core of his theory of program-size complexity. The two previous volumes are more concerned with applications to meta-mathematics. LISP is used to present the key algorithms and to enable computer users to interact with the authors proofs and discover for themselves how they work. The LISP code for this book is available at the author's Web site together with a Java applet LISP interpreter. "No one has looked deeper and farther into the abyss of randomness and its role in mathematics than Greg Chaitin. This book tells you everything hes seen. Don miss it." John Casti, Santa Fe Institute, Author of Goedel: A Life of Logic.'
Randomness and Complexity
Author: Cristian Calude
Publisher: World Scientific
ISBN: 9812770828
Category : Science
Languages : en
Pages : 466
Book Description
The book is a collection of papers written by a selection of eminent authors from around the world in honour of Gregory Chaitin's 60th birthday. This is a unique volume including technical contributions, philosophical papers and essays.
Publisher: World Scientific
ISBN: 9812770828
Category : Science
Languages : en
Pages : 466
Book Description
The book is a collection of papers written by a selection of eminent authors from around the world in honour of Gregory Chaitin's 60th birthday. This is a unique volume including technical contributions, philosophical papers and essays.
Formal Theories of Information
Author: Giovanni Sommaruga
Publisher: Springer Science & Business Media
ISBN: 3642006582
Category : Computers
Languages : en
Pages : 275
Book Description
This book presents the scientific outcome of a joint effort of the computer science departments of the universities of Berne, Fribourg and Neuchâtel. Within an initiative devoted to "Information and Knowledge", these research groups collaborated over several years on issues of logic, probability, inference, and deduction. The goal of this volume is to examine whether there is any common ground between the different approaches to the concept of information. The structure of this book could be represented by a circular model, with an innermost syntactical circle, comprising statistical and algorithmic approaches; a second, larger circle, the semantical one, in which "meaning" enters the stage; and finally an outermost circle, the pragmatic one, casting light on real-life logical reasoning. These articles are complemented by two philosophical contributions exploring the wide conceptual field as well as taking stock of the articles on the various formal theories of information.
Publisher: Springer Science & Business Media
ISBN: 3642006582
Category : Computers
Languages : en
Pages : 275
Book Description
This book presents the scientific outcome of a joint effort of the computer science departments of the universities of Berne, Fribourg and Neuchâtel. Within an initiative devoted to "Information and Knowledge", these research groups collaborated over several years on issues of logic, probability, inference, and deduction. The goal of this volume is to examine whether there is any common ground between the different approaches to the concept of information. The structure of this book could be represented by a circular model, with an innermost syntactical circle, comprising statistical and algorithmic approaches; a second, larger circle, the semantical one, in which "meaning" enters the stage; and finally an outermost circle, the pragmatic one, casting light on real-life logical reasoning. These articles are complemented by two philosophical contributions exploring the wide conceptual field as well as taking stock of the articles on the various formal theories of information.
An Introduction to Kolmogorov Complexity and Its Applications
Author: Ming Li
Publisher: Springer
ISBN: 3030112985
Category : Mathematics
Languages : en
Pages : 852
Book Description
This must-read textbook presents an essential introduction to Kolmogorov complexity (KC), a central theory and powerful tool in information science that deals with the quantity of information in individual objects. The text covers both the fundamental concepts and the most important practical applications, supported by a wealth of didactic features. This thoroughly revised and enhanced fourth edition includes new and updated material on, amongst other topics, the Miller-Yu theorem, the Gács-Kučera theorem, the Day-Gács theorem, increasing randomness, short lists computable from an input string containing the incomputable Kolmogorov complexity of the input, the Lovász local lemma, sorting, the algorithmic full Slepian-Wolf theorem for individual strings, multiset normalized information distance and normalized web distance, and conditional universal distribution. Topics and features: describes the mathematical theory of KC, including the theories of algorithmic complexity and algorithmic probability; presents a general theory of inductive reasoning and its applications, and reviews the utility of the incompressibility method; covers the practical application of KC in great detail, including the normalized information distance (the similarity metric) and information diameter of multisets in phylogeny, language trees, music, heterogeneous files, and clustering; discusses the many applications of resource-bounded KC, and examines different physical theories from a KC point of view; includes numerous examples that elaborate the theory, and a range of exercises of varying difficulty (with solutions); offers explanatory asides on technical issues, and extensive historical sections; suggests structures for several one-semester courses in the preface. As the definitive textbook on Kolmogorov complexity, this comprehensive and self-contained work is an invaluable resource for advanced undergraduate students, graduate students, and researchers in all fields of science.
Publisher: Springer
ISBN: 3030112985
Category : Mathematics
Languages : en
Pages : 852
Book Description
This must-read textbook presents an essential introduction to Kolmogorov complexity (KC), a central theory and powerful tool in information science that deals with the quantity of information in individual objects. The text covers both the fundamental concepts and the most important practical applications, supported by a wealth of didactic features. This thoroughly revised and enhanced fourth edition includes new and updated material on, amongst other topics, the Miller-Yu theorem, the Gács-Kučera theorem, the Day-Gács theorem, increasing randomness, short lists computable from an input string containing the incomputable Kolmogorov complexity of the input, the Lovász local lemma, sorting, the algorithmic full Slepian-Wolf theorem for individual strings, multiset normalized information distance and normalized web distance, and conditional universal distribution. Topics and features: describes the mathematical theory of KC, including the theories of algorithmic complexity and algorithmic probability; presents a general theory of inductive reasoning and its applications, and reviews the utility of the incompressibility method; covers the practical application of KC in great detail, including the normalized information distance (the similarity metric) and information diameter of multisets in phylogeny, language trees, music, heterogeneous files, and clustering; discusses the many applications of resource-bounded KC, and examines different physical theories from a KC point of view; includes numerous examples that elaborate the theory, and a range of exercises of varying difficulty (with solutions); offers explanatory asides on technical issues, and extensive historical sections; suggests structures for several one-semester courses in the preface. As the definitive textbook on Kolmogorov complexity, this comprehensive and self-contained work is an invaluable resource for advanced undergraduate students, graduate students, and researchers in all fields of science.
Randomness Through Computation: Some Answers, More Questions
Author: Hector Zenil
Publisher: World Scientific
ISBN: 9814462632
Category : Computers
Languages : en
Pages : 439
Book Description
This review volume consists of a set of chapters written by leading scholars, most of them founders of their fields. It explores the connections of Randomness to other areas of scientific knowledge, especially its fruitful relationship to Computability and Complexity Theory, and also to areas such as Probability, Statistics, Information Theory, Biology, Physics, Quantum Mechanics, Learning Theory and Artificial Intelligence. The contributors cover these topics without neglecting important philosophical dimensions, sometimes going beyond the purely technical to formulate age old questions relating to matters such as determinism and free will.The scope of Randomness Through Computation is novel. Each contributor shares their personal views and anecdotes on the various reasons and motivations which led them to the study of Randomness. Using a question and answer format, they share their visions from their several distinctive vantage points.
Publisher: World Scientific
ISBN: 9814462632
Category : Computers
Languages : en
Pages : 439
Book Description
This review volume consists of a set of chapters written by leading scholars, most of them founders of their fields. It explores the connections of Randomness to other areas of scientific knowledge, especially its fruitful relationship to Computability and Complexity Theory, and also to areas such as Probability, Statistics, Information Theory, Biology, Physics, Quantum Mechanics, Learning Theory and Artificial Intelligence. The contributors cover these topics without neglecting important philosophical dimensions, sometimes going beyond the purely technical to formulate age old questions relating to matters such as determinism and free will.The scope of Randomness Through Computation is novel. Each contributor shares their personal views and anecdotes on the various reasons and motivations which led them to the study of Randomness. Using a question and answer format, they share their visions from their several distinctive vantage points.