Author: Latif Al-Hakim
Publisher: IGI Global
ISBN: 1599040247
Category : Business & Economics
Languages : en
Pages : 326
Book Description
Technologies such as the Internet and mobile commerce bring with them ubiquitous connectivity, real-time access, and overwhelming volumes of data and information. The growth of data warehouses and communication and information technologies has increased the need for high information quality management in organizations. Information Quality Management: Theory and Applications provides solutions to information quality problems becoming increasingly prevalent.Information Quality Management: Theory and Applications provides insights and support for professionals and researchers working in the field of information and knowledge management, information quality, practitioners and managers of manufacturing, and service industries concerned with the management of information.
Information Quality Management
Author: Latif Al-Hakim
Publisher: IGI Global
ISBN: 1599040247
Category : Business & Economics
Languages : en
Pages : 326
Book Description
Technologies such as the Internet and mobile commerce bring with them ubiquitous connectivity, real-time access, and overwhelming volumes of data and information. The growth of data warehouses and communication and information technologies has increased the need for high information quality management in organizations. Information Quality Management: Theory and Applications provides solutions to information quality problems becoming increasingly prevalent.Information Quality Management: Theory and Applications provides insights and support for professionals and researchers working in the field of information and knowledge management, information quality, practitioners and managers of manufacturing, and service industries concerned with the management of information.
Publisher: IGI Global
ISBN: 1599040247
Category : Business & Economics
Languages : en
Pages : 326
Book Description
Technologies such as the Internet and mobile commerce bring with them ubiquitous connectivity, real-time access, and overwhelming volumes of data and information. The growth of data warehouses and communication and information technologies has increased the need for high information quality management in organizations. Information Quality Management: Theory and Applications provides solutions to information quality problems becoming increasingly prevalent.Information Quality Management: Theory and Applications provides insights and support for professionals and researchers working in the field of information and knowledge management, information quality, practitioners and managers of manufacturing, and service industries concerned with the management of information.
Foundations of Data Quality Management
Author: Wenfei Fan
Publisher: Morgan & Claypool Publishers
ISBN: 160845777X
Category : Computers
Languages : en
Pages : 220
Book Description
Provides an overview of fundamental issues underlying central aspects of data quality - data consistency, data deduplication, data accuracy, data currency, and information completeness. The book promotes a uniform logical framework for dealing with these issues, based on data quality rules.
Publisher: Morgan & Claypool Publishers
ISBN: 160845777X
Category : Computers
Languages : en
Pages : 220
Book Description
Provides an overview of fundamental issues underlying central aspects of data quality - data consistency, data deduplication, data accuracy, data currency, and information completeness. The book promotes a uniform logical framework for dealing with these issues, based on data quality rules.
Managing Information Quality
Author: Martin J. Eppler
Publisher: Springer Science & Business Media
ISBN: 3540247823
Category : Business & Economics
Languages : en
Pages : 312
Book Description
What makes information useful? This seemingly simple and yet intriguing and complicated question is discussed in this book. It examines ways in which the quality of information can be improved in knowledge-intensive processes (such as on-line communication, strategy, product development, or consulting). Based on existing information quality literature, the book proposes a conceptual framework to manage information quality for knowledge-based content. It presents four proven principles to apply the framework to a variety of information products. Five in-depth company case studies show how information quality can be managed systematically. The book uses frequent diagrams and tables, as well as diagnostic questions and summary boxes to make its content actionable.
Publisher: Springer Science & Business Media
ISBN: 3540247823
Category : Business & Economics
Languages : en
Pages : 312
Book Description
What makes information useful? This seemingly simple and yet intriguing and complicated question is discussed in this book. It examines ways in which the quality of information can be improved in knowledge-intensive processes (such as on-line communication, strategy, product development, or consulting). Based on existing information quality literature, the book proposes a conceptual framework to manage information quality for knowledge-based content. It presents four proven principles to apply the framework to a variety of information products. Five in-depth company case studies show how information quality can be managed systematically. The book uses frequent diagrams and tables, as well as diagnostic questions and summary boxes to make its content actionable.
Data Quality
Author: Thomas C. Redman
Publisher: Random House Puzzles & Games
ISBN: 9780553091496
Category : Computers
Languages : en
Pages : 308
Book Description
Data Quality begins with an explanation of what data is, how it is created and destroyed, then explores the true quality of data--accuracy, consistency and currentness. From there, the author covers the powerful methods of statistical quality control and process management to bear on the core processes that create, manipulate, use and store data values. Table of Contents: 1. Introduction; 2. Data and Information; 3. Dimensions of Data Quality; 4. Statistical Quality Control; 5. Process Management; 6. Process Representation and the Functions of Information Processing Approach; 7. Data Quality Requirements; 8. Measurement Systems and Data Quality; 9. Process Redesign Using Experimentation and Computer Simulation; 10. Managing Multiple Processes; 11. Perspective Prospects and Implications; 12. Summaries.
Publisher: Random House Puzzles & Games
ISBN: 9780553091496
Category : Computers
Languages : en
Pages : 308
Book Description
Data Quality begins with an explanation of what data is, how it is created and destroyed, then explores the true quality of data--accuracy, consistency and currentness. From there, the author covers the powerful methods of statistical quality control and process management to bear on the core processes that create, manipulate, use and store data values. Table of Contents: 1. Introduction; 2. Data and Information; 3. Dimensions of Data Quality; 4. Statistical Quality Control; 5. Process Management; 6. Process Representation and the Functions of Information Processing Approach; 7. Data Quality Requirements; 8. Measurement Systems and Data Quality; 9. Process Redesign Using Experimentation and Computer Simulation; 10. Managing Multiple Processes; 11. Perspective Prospects and Implications; 12. Summaries.
Information Quality Applied
Author: Larry P. English
Publisher: Wiley
ISBN: 9780470134474
Category : Computers
Languages : en
Pages : 0
Book Description
How to apply data quality management techniques to marketing, sales, and other specific business units Author and information quality management expert Larry English returns with a sequel to his much-acclaimed book, Improving Data Warehouse and Business Information Quality. In this new book he takes a hands-on approach, showing how to apply the concepts outlined in the first book to specific business areas like marketing, sales, finance, and human resources. The book presents real-world scenarios so you can see how to meld data quality concepts to specific business areas such as supply chain management, product and service development, customer care, and others. Step-by-step instruction, practical techniques, and helpful templates from the author help you immediately apply best practices and start modeling your own quality initiatives. Maintaining the quality and accuracy of business data is crucial; database managers are in need of specific guidance for data quality management in all key business areas Information Quality Applied offers IT, database, and business managers step-by-step instruction in setting up methodical and effective procedures The book provides specifics if you have to manage data quality in marketing, sales, customer care, supply chain management, product and service management, human resources, or finance The author includes templates that readers can put to immedate use for modeling their own quality initiatives A Companion Web site provides templates, updates to the book, and links to related sites
Publisher: Wiley
ISBN: 9780470134474
Category : Computers
Languages : en
Pages : 0
Book Description
How to apply data quality management techniques to marketing, sales, and other specific business units Author and information quality management expert Larry English returns with a sequel to his much-acclaimed book, Improving Data Warehouse and Business Information Quality. In this new book he takes a hands-on approach, showing how to apply the concepts outlined in the first book to specific business areas like marketing, sales, finance, and human resources. The book presents real-world scenarios so you can see how to meld data quality concepts to specific business areas such as supply chain management, product and service development, customer care, and others. Step-by-step instruction, practical techniques, and helpful templates from the author help you immediately apply best practices and start modeling your own quality initiatives. Maintaining the quality and accuracy of business data is crucial; database managers are in need of specific guidance for data quality management in all key business areas Information Quality Applied offers IT, database, and business managers step-by-step instruction in setting up methodical and effective procedures The book provides specifics if you have to manage data quality in marketing, sales, customer care, supply chain management, product and service management, human resources, or finance The author includes templates that readers can put to immedate use for modeling their own quality initiatives A Companion Web site provides templates, updates to the book, and links to related sites
Data Quality Management with Semantic Technologies
Author: Christian Fürber
Publisher: Springer
ISBN: 3658122250
Category : Computers
Languages : en
Pages : 230
Book Description
Christian Fürber investigates the useful application of semantic technologies for the area of data quality management. Based on a literature analysis of typical data quality problems and typical activities of data quality management processes, he develops the Semantic Data Quality Management framework as the major contribution of this thesis. The SDQM framework consists of three components that are evaluated in two different use cases. Moreover, this thesis compares the framework to conventional data quality software. Besides the framework, this thesis delivers important theoretical findings, namely a comprehensive typology of data quality problems, ten generic data requirement types, a requirement-centric data quality management process, and an analysis of related work.
Publisher: Springer
ISBN: 3658122250
Category : Computers
Languages : en
Pages : 230
Book Description
Christian Fürber investigates the useful application of semantic technologies for the area of data quality management. Based on a literature analysis of typical data quality problems and typical activities of data quality management processes, he develops the Semantic Data Quality Management framework as the major contribution of this thesis. The SDQM framework consists of three components that are evaluated in two different use cases. Moreover, this thesis compares the framework to conventional data quality software. Besides the framework, this thesis delivers important theoretical findings, namely a comprehensive typology of data quality problems, ten generic data requirement types, a requirement-centric data quality management process, and an analysis of related work.
Handbook of Data Quality
Author: Shazia Sadiq
Publisher: Springer Science & Business Media
ISBN: 3642362575
Category : Computers
Languages : en
Pages : 440
Book Description
The issue of data quality is as old as data itself. However, the proliferation of diverse, large-scale and often publically available data on the Web has increased the risk of poor data quality and misleading data interpretations. On the other hand, data is now exposed at a much more strategic level e.g. through business intelligence systems, increasing manifold the stakes involved for individuals, corporations as well as government agencies. There, the lack of knowledge about data accuracy, currency or completeness can have erroneous and even catastrophic results. With these changes, traditional approaches to data management in general, and data quality control specifically, are challenged. There is an evident need to incorporate data quality considerations into the whole data cycle, encompassing managerial/governance as well as technical aspects. Data quality experts from research and industry agree that a unified framework for data quality management should bring together organizational, architectural and computational approaches. Accordingly, Sadiq structured this handbook in four parts: Part I is on organizational solutions, i.e. the development of data quality objectives for the organization, and the development of strategies to establish roles, processes, policies, and standards required to manage and ensure data quality. Part II, on architectural solutions, covers the technology landscape required to deploy developed data quality management processes, standards and policies. Part III, on computational solutions, presents effective and efficient tools and techniques related to record linkage, lineage and provenance, data uncertainty, and advanced integrity constraints. Finally, Part IV is devoted to case studies of successful data quality initiatives that highlight the various aspects of data quality in action. The individual chapters present both an overview of the respective topic in terms of historical research and/or practice and state of the art, as well as specific techniques, methodologies and frameworks developed by the individual contributors. Researchers and students of computer science, information systems, or business management as well as data professionals and practitioners will benefit most from this handbook by not only focusing on the various sections relevant to their research area or particular practical work, but by also studying chapters that they may initially consider not to be directly relevant to them, as there they will learn about new perspectives and approaches.
Publisher: Springer Science & Business Media
ISBN: 3642362575
Category : Computers
Languages : en
Pages : 440
Book Description
The issue of data quality is as old as data itself. However, the proliferation of diverse, large-scale and often publically available data on the Web has increased the risk of poor data quality and misleading data interpretations. On the other hand, data is now exposed at a much more strategic level e.g. through business intelligence systems, increasing manifold the stakes involved for individuals, corporations as well as government agencies. There, the lack of knowledge about data accuracy, currency or completeness can have erroneous and even catastrophic results. With these changes, traditional approaches to data management in general, and data quality control specifically, are challenged. There is an evident need to incorporate data quality considerations into the whole data cycle, encompassing managerial/governance as well as technical aspects. Data quality experts from research and industry agree that a unified framework for data quality management should bring together organizational, architectural and computational approaches. Accordingly, Sadiq structured this handbook in four parts: Part I is on organizational solutions, i.e. the development of data quality objectives for the organization, and the development of strategies to establish roles, processes, policies, and standards required to manage and ensure data quality. Part II, on architectural solutions, covers the technology landscape required to deploy developed data quality management processes, standards and policies. Part III, on computational solutions, presents effective and efficient tools and techniques related to record linkage, lineage and provenance, data uncertainty, and advanced integrity constraints. Finally, Part IV is devoted to case studies of successful data quality initiatives that highlight the various aspects of data quality in action. The individual chapters present both an overview of the respective topic in terms of historical research and/or practice and state of the art, as well as specific techniques, methodologies and frameworks developed by the individual contributors. Researchers and students of computer science, information systems, or business management as well as data professionals and practitioners will benefit most from this handbook by not only focusing on the various sections relevant to their research area or particular practical work, but by also studying chapters that they may initially consider not to be directly relevant to them, as there they will learn about new perspectives and approaches.
Data Quality
Author: Rupa Mahanti
Publisher: Quality Press
ISBN: 0873899776
Category : Business & Economics
Languages : en
Pages : 368
Book Description
This is not the kind of book that youll read one time and be done with. So scan it quickly the first time through to get an idea of its breadth. Then dig in on one topic of special importance to your work. Finally, use it as a reference to guide your next steps, learn details, and broaden your perspective. from the foreword by Thomas C. Redman, Ph.D., the Data Doc Good data is a source of myriad opportunities, while bad data is a tremendous burden. Companies that manage their data effectively are able to achieve a competitive advantage in the marketplace, while bad data, like cancer, can weaken and kill an organization. In this comprehensive book, Rupa Mahanti provides guidance on the different aspects of data quality with the aim to be able to improve data quality. Specifically, the book addresses: -Causes of bad data quality, bad data quality impacts, and importance of data quality to justify the case for data quality-Butterfly effect of data quality-A detailed description of data quality dimensions and their measurement-Data quality strategy approach-Six Sigma - DMAIC approach to data quality-Data quality management techniques-Data quality in relation to data initiatives like data migration, MDM, data governance, etc.-Data quality myths, challenges, and critical success factorsStudents, academicians, professionals, and researchers can all use the content in this book to further their knowledge and get guidance on their own specific projects. It balances technical details (for example, SQL statements, relational database components, data quality dimensions measurements) and higher-level qualitative discussions (cost of data quality, data quality strategy, data quality maturity, the case made for data quality, and so on) with case studies, illustrations, and real-world examples throughout.
Publisher: Quality Press
ISBN: 0873899776
Category : Business & Economics
Languages : en
Pages : 368
Book Description
This is not the kind of book that youll read one time and be done with. So scan it quickly the first time through to get an idea of its breadth. Then dig in on one topic of special importance to your work. Finally, use it as a reference to guide your next steps, learn details, and broaden your perspective. from the foreword by Thomas C. Redman, Ph.D., the Data Doc Good data is a source of myriad opportunities, while bad data is a tremendous burden. Companies that manage their data effectively are able to achieve a competitive advantage in the marketplace, while bad data, like cancer, can weaken and kill an organization. In this comprehensive book, Rupa Mahanti provides guidance on the different aspects of data quality with the aim to be able to improve data quality. Specifically, the book addresses: -Causes of bad data quality, bad data quality impacts, and importance of data quality to justify the case for data quality-Butterfly effect of data quality-A detailed description of data quality dimensions and their measurement-Data quality strategy approach-Six Sigma - DMAIC approach to data quality-Data quality management techniques-Data quality in relation to data initiatives like data migration, MDM, data governance, etc.-Data quality myths, challenges, and critical success factorsStudents, academicians, professionals, and researchers can all use the content in this book to further their knowledge and get guidance on their own specific projects. It balances technical details (for example, SQL statements, relational database components, data quality dimensions measurements) and higher-level qualitative discussions (cost of data quality, data quality strategy, data quality maturity, the case made for data quality, and so on) with case studies, illustrations, and real-world examples throughout.
Executing Data Quality Projects
Author: Danette McGilvray
Publisher: Academic Press
ISBN: 0128180161
Category : Computers
Languages : en
Pages : 378
Book Description
Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization. Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work – with the end result of high-quality trusted data and information, so critical to today's data-dependent organizations. The Ten Steps approach applies to all types of data and all types of organizations – for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action. This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization's standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all. The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before. - Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach - Contains real examples from around the world, gleaned from the author's consulting practice and from those who implemented based on her training courses and the earlier edition of the book - Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices - A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online
Publisher: Academic Press
ISBN: 0128180161
Category : Computers
Languages : en
Pages : 378
Book Description
Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization. Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work – with the end result of high-quality trusted data and information, so critical to today's data-dependent organizations. The Ten Steps approach applies to all types of data and all types of organizations – for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action. This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization's standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all. The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before. - Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach - Contains real examples from around the world, gleaned from the author's consulting practice and from those who implemented based on her training courses and the earlier edition of the book - Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices - A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online
The Philosophy of Information Quality
Author: Luciano Floridi
Publisher: Springer
ISBN: 3319071211
Category : Philosophy
Languages : en
Pages : 315
Book Description
This work fulfills the need for a conceptual and technical framework to improve understanding of Information Quality (IQ) and Information Quality standards. The meaning and practical implementation of IQ are addressed, as it is relevant to any field where there is a need to handle data and issues such as accessibility, accuracy, completeness, currency, integrity, reliability, timeliness, usability, the role of metrics and so forth are all a part of Information Quality. In order to support the cross-fertilization of theory and practice, the latest research is presented in this book. The perspectives of experts from beyond the origins of IQ in computer science are included: library and information science practitioners and academics, philosophers of information, of engineering and technology, and of science are all contributors to this volume. The chapters in this volume are based on the work of a collaborative research project involving the Arts and Humanities Research Council and Google and led by Professor Luciano Floridi, University of Oxford. This work will be of interest to anyone handling data, including those from commercial, public, governmental and academic organizations. The expert editors’ contributions introduce issues of interest to scientists, database curators and philosophers, even though the issues may be disguised in the language and examples common to a different discipline.
Publisher: Springer
ISBN: 3319071211
Category : Philosophy
Languages : en
Pages : 315
Book Description
This work fulfills the need for a conceptual and technical framework to improve understanding of Information Quality (IQ) and Information Quality standards. The meaning and practical implementation of IQ are addressed, as it is relevant to any field where there is a need to handle data and issues such as accessibility, accuracy, completeness, currency, integrity, reliability, timeliness, usability, the role of metrics and so forth are all a part of Information Quality. In order to support the cross-fertilization of theory and practice, the latest research is presented in this book. The perspectives of experts from beyond the origins of IQ in computer science are included: library and information science practitioners and academics, philosophers of information, of engineering and technology, and of science are all contributors to this volume. The chapters in this volume are based on the work of a collaborative research project involving the Arts and Humanities Research Council and Google and led by Professor Luciano Floridi, University of Oxford. This work will be of interest to anyone handling data, including those from commercial, public, governmental and academic organizations. The expert editors’ contributions introduce issues of interest to scientists, database curators and philosophers, even though the issues may be disguised in the language and examples common to a different discipline.