Information Geometry and Population Genetics

Information Geometry and Population Genetics PDF Author: Julian Hofrichter
Publisher: Springer
ISBN: 3319520458
Category : Mathematics
Languages : en
Pages : 323

Get Book Here

Book Description
The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.

Information Geometry and Population Genetics

Information Geometry and Population Genetics PDF Author: Julian Hofrichter
Publisher: Springer
ISBN: 3319520458
Category : Mathematics
Languages : en
Pages : 323

Get Book Here

Book Description
The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.

Information Geometry

Information Geometry PDF Author: Nihat Ay
Publisher: Springer
ISBN: 3319564781
Category : Mathematics
Languages : en
Pages : 411

Get Book Here

Book Description
The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, information theory, or the foundations of statistics, to statisticians as well as to scientists interested in the mathematical foundations of complex systems.

Information Geometry

Information Geometry PDF Author:
Publisher: Elsevier
ISBN: 0323855687
Category : Mathematics
Languages : en
Pages : 250

Get Book Here

Book Description
The subject of information geometry blends several areas of statistics, computer science, physics, and mathematics. The subject evolved from the groundbreaking article published by legendary statistician C.R. Rao in 1945. His works led to the creation of Cramer-Rao bounds, Rao distance, and Rao-Blackawellization. Fisher-Rao metrics and Rao distances play a very important role in geodesics, econometric analysis to modern-day business analytics. The chapters of the book are written by experts in the field who have been promoting the field of information geometry and its applications. - Written by experts for users of information geometry - Basics to advanced readers are equally taken care - Origins and Clarity on Foundations

The Geometry of Population Genetics

The Geometry of Population Genetics PDF Author: Ethan Akin
Publisher: Springer Science & Business Media
ISBN: 3642931286
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description
The differential equations which model the action of selection and recombination are nonlinear equations which are impossible to It is even difficult to describe in general the solve explicitly. Recently, Shahshahani began using qualitative behavior of solutions. differential geometry to study these equations [28]. with this mono graph I hope to show that his ideas illuminate many aspects of pop ulation genetics. Among these are his proof and clarification of Fisher's Fundamental Theorem of Natural Selection and Kimura's Maximum Principle and also the effect of recombination on entropy. We also discover the relationship between two classic measures of 2 genetic distance: the x measure and the arc-cosine measure. There are two large applications. The first is a precise definition of the biological concept of degree of epistasis which applies to general (i.e. frequency dependent) forms of selection. The second is the unexpected appearance of cycling. We show that cycles can occur in the two-locus-two-allele model of selection plus recombination even when the fitness numbers are constant (i.e. no frequency dependence). This work is addressed to two different kinds of readers which accounts for its mode of organization. For the biologist, Chapter I contains a description of the entire work with brief indications of a proof for the harder results. I imagine a reader with some familiarity with linear algebra and systems of differential equations. Ideal background is Hirsch and Smale's text [15].

Our Genes

Our Genes PDF Author: Rasmus Grønfeldt Winther
Publisher: Cambridge University Press
ISBN: 1316762092
Category : Science
Languages : en
Pages : 395

Get Book Here

Book Description
Situated at the intersection of natural science and philosophy, Our Genes explores historical practices, investigates current trends, and imagines future work in genetic research to answer persistent, political questions about human diversity. Readers are guided through fascinating thought experiments, complex measures and metrics, fundamental evolutionary patterns, and in-depth treatment of exciting case studies. The work culminates in a philosophical rationale, based on scientific evidence, for a moderate position about the explanatory power of genes that is often left unarticulated. Simply put, human evolutionary genomics - our genes - can tell us much about who we are as individuals and as collectives. However, while they convey scientific certainty in the popular imagination, genes cannot answer some of our most important questions. Alternating between an up-close and a zoomed-out focus on genes and genomes, individuals and collectives, species and populations, Our Genes argues that the answers we seek point to rich, necessary work ahead.

Methods of Information Geometry

Methods of Information Geometry PDF Author: Shun-ichi Amari
Publisher: American Mathematical Soc.
ISBN: 9780821843024
Category : Computers
Languages : en
Pages : 220

Get Book Here

Book Description
Information geometry provides the mathematical sciences with a fresh framework of analysis. This book presents a comprehensive introduction to the mathematical foundation of information geometry. It provides an overview of many areas of applications, such as statistics, linear systems, information theory, quantum mechanics, and convex analysis.

Geometric Structures of Statistical Physics, Information Geometry, and Learning

Geometric Structures of Statistical Physics, Information Geometry, and Learning PDF Author: Frédéric Barbaresco
Publisher: Springer Nature
ISBN: 3030779572
Category : Mathematics
Languages : en
Pages : 466

Get Book Here

Book Description
Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces. This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing.

Riemannian Geometry and Geometric Analysis

Riemannian Geometry and Geometric Analysis PDF Author: Jürgen Jost
Publisher: Springer
ISBN: 3319618601
Category : Mathematics
Languages : en
Pages : 702

Get Book Here

Book Description
This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research. The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the Bishop-Gromov volume growth theorem which elucidates the geometric role of Ricci curvature. From the reviews:“This book provides a very readable introduction to Riemannian geometry and geometric analysis... With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome.” Mathematical Reviews “For readers familiar with the basics of differential geometry and some acquaintance with modern analysis, the book is reasonably self-contained. The book succeeds very well in laying out the foundations of modern Riemannian geometry and geometric analysis. It introduces a number of key techniques and provides a representative overview of the field.” Monatshefte für Mathematik

Mathematical Methods in Biology and Neurobiology

Mathematical Methods in Biology and Neurobiology PDF Author: Jürgen Jost
Publisher: Springer Science & Business Media
ISBN: 1447163532
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
Mathematical models can be used to meet many of the challenges and opportunities offered by modern biology. The description of biological phenomena requires a range of mathematical theories. This is the case particularly for the emerging field of systems biology. Mathematical Methods in Biology and Neurobiology introduces and develops these mathematical structures and methods in a systematic manner. It studies: • discrete structures and graph theory • stochastic processes • dynamical systems and partial differential equations • optimization and the calculus of variations. The biological applications range from molecular to evolutionary and ecological levels, for example: • cellular reaction kinetics and gene regulation • biological pattern formation and chemotaxis • the biophysics and dynamics of neurons • the coding of information in neuronal systems • phylogenetic tree reconstruction • branching processes and population genetics • optimal resource allocation • sexual recombination • the interaction of species. Written by one of the most experienced and successful authors of advanced mathematical textbooks, this book stands apart for the wide range of mathematical tools that are featured. It will be useful for graduate students and researchers in mathematics and physics that want a comprehensive overview and a working knowledge of the mathematical tools that can be applied in biology. It will also be useful for biologists with some mathematical background that want to learn more about the mathematical methods available to deal with biological structures and data.

Intelligent Systems and Applications

Intelligent Systems and Applications PDF Author: Kohei Arai
Publisher: Springer Nature
ISBN: 3030821994
Category : Technology & Engineering
Languages : en
Pages : 901

Get Book Here

Book Description
This book presents Proceedings of the 2021 Intelligent Systems Conference which is a remarkable collection of chapters covering a wider range of topics in areas of intelligent systems and artificial intelligence and their applications to the real world. The conference attracted a total of 496 submissions from many academic pioneering researchers, scientists, industrial engineers, and students from all around the world. These submissions underwent a double-blind peer-review process. Of the total submissions, 180 submissions have been selected to be included in these proceedings. As we witness exponential growth of computational intelligence in several directions and use of intelligent systems in everyday applications, this book is an ideal resource for reporting latest innovations and future of AI. The chapters include theory and application on all aspects of artificial intelligence, from classical to intelligent scope. We hope that readers find the book interesting and valuable; it provides the state-of-the-art intelligent methods and techniques for solving real-world problems along with a vision of the future research.