Information-based methods for neuroimaging: analyzing structure, function and dynamics

Information-based methods for neuroimaging: analyzing structure, function and dynamics PDF Author: Jesus M. Cortés
Publisher: Frontiers Media SA
ISBN: 2889195023
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 192

Get Book

Book Description
The aim of this Research Topic is to discuss the state of the art on the use of Information-based methods in the analysis of neuroimaging data. Information-based methods, typically built as extensions of the Shannon Entropy, are at the basis of model-free approaches which, being based on probability distributions rather than on specific expectations, can account for all possible non-linearities present in the data in a model-independent fashion. Mutual Information-like methods can also be applied on interacting dynamical variables described by time-series, thus addressing the uncertainty reduction (or information) in one variable by conditioning on another set of variables. In the last years, different Information-based methods have been shown to be flexible and powerful tools to analyze neuroimaging data, with a wide range of different methodologies, including formulations-based on bivariate vs multivariate representations, frequency vs time domains, etc. Apart from methodological issues, the information bit as a common unit represents a convenient way to open the road for comparison and integration between different measurements of neuroimaging data in three complementary contexts: Structural Connectivity, Dynamical (Functional and Effective) Connectivity, and Modelling of brain activity. Applications are ubiquitous, starting from resting state in healthy subjects to modulations of consciousness and other aspects of pathophysiology. Mutual Information-based methods have provided new insights about common-principles in brain organization, showing the existence of an active default network when the brain is at rest. It is not clear, however, how this default network is generated, the different modules are intra-interacting, or disappearing in the presence of stimulation. Some of these open-questions at the functional level might find their mechanisms on their structural correlates. A key question is the link between structure and function and the use of structural priors for the understanding of the functional connectivity measures. As effective connectivity is concerned, recently a common framework has been proposed for Transfer Entropy and Granger Causality, a well-established methodology originally based on autoregressive models. This framework can open the way to new theories and applications. This Research Topic brings together contributions from researchers from different backgrounds which are either developing new approaches, or applying existing methodologies to new data, and we hope it will set the basis for discussing the development and validation of new Information-based methodologies for the understanding of brain structure, function, and dynamics.

Information-based methods for neuroimaging: analyzing structure, function and dynamics

Information-based methods for neuroimaging: analyzing structure, function and dynamics PDF Author: Jesus M. Cortés
Publisher: Frontiers Media SA
ISBN: 2889195023
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 192

Get Book

Book Description
The aim of this Research Topic is to discuss the state of the art on the use of Information-based methods in the analysis of neuroimaging data. Information-based methods, typically built as extensions of the Shannon Entropy, are at the basis of model-free approaches which, being based on probability distributions rather than on specific expectations, can account for all possible non-linearities present in the data in a model-independent fashion. Mutual Information-like methods can also be applied on interacting dynamical variables described by time-series, thus addressing the uncertainty reduction (or information) in one variable by conditioning on another set of variables. In the last years, different Information-based methods have been shown to be flexible and powerful tools to analyze neuroimaging data, with a wide range of different methodologies, including formulations-based on bivariate vs multivariate representations, frequency vs time domains, etc. Apart from methodological issues, the information bit as a common unit represents a convenient way to open the road for comparison and integration between different measurements of neuroimaging data in three complementary contexts: Structural Connectivity, Dynamical (Functional and Effective) Connectivity, and Modelling of brain activity. Applications are ubiquitous, starting from resting state in healthy subjects to modulations of consciousness and other aspects of pathophysiology. Mutual Information-based methods have provided new insights about common-principles in brain organization, showing the existence of an active default network when the brain is at rest. It is not clear, however, how this default network is generated, the different modules are intra-interacting, or disappearing in the presence of stimulation. Some of these open-questions at the functional level might find their mechanisms on their structural correlates. A key question is the link between structure and function and the use of structural priors for the understanding of the functional connectivity measures. As effective connectivity is concerned, recently a common framework has been proposed for Transfer Entropy and Granger Causality, a well-established methodology originally based on autoregressive models. This framework can open the way to new theories and applications. This Research Topic brings together contributions from researchers from different backgrounds which are either developing new approaches, or applying existing methodologies to new data, and we hope it will set the basis for discussing the development and validation of new Information-based methodologies for the understanding of brain structure, function, and dynamics.

Information-based Methods for Neuroimaging

Information-based Methods for Neuroimaging PDF Author:
Publisher:
ISBN:
Category : Brain
Languages : en
Pages : 191

Get Book

Book Description


Computational Science and Its Applications – ICCSA 2018

Computational Science and Its Applications – ICCSA 2018 PDF Author: Osvaldo Gervasi
Publisher: Springer
ISBN: 3319951718
Category : Computers
Languages : en
Pages : 819

Get Book

Book Description
The five volume set LNCS 10960 until 10964 constitutes the refereed proceedings of the 18th International Conference on Computational Science and Its Applications, ICCSA 2018, held in Melbourne, Australia, in July 2018. Apart from the general tracks, ICCSA 2018 also includes 34 international workshops in various areas of computational sciences, ranging from computational science technologies, to specific areas of computational sciences, such as computer graphics and virtual reality.

Neuroimaging

Neuroimaging PDF Author: Sanja Josef Golubic
Publisher: BoD – Books on Demand
ISBN: 1789858054
Category : Medical
Languages : en
Pages : 172

Get Book

Book Description
Neuroimaging provides a valuable noninvasive window into the human neural system and is used in fundamental and clinical research. Imaging techniques are essential for understanding spontaneous neural activity and brain mechanisms engaged in the processing of external inputs, memory formation, and cognition. Modern imaging modalities make it possible to visualize memory processes within the brain and to create images of its structure and function. Scientists and technologists are joining forces to pave the way for improving imaging technologies and methods, data analysis, and the application of imaging to investigate the wide spectra of neurological diseases, neuropsychological disorders, and aging. Imaging techniques are essential for the identification of biological markers of the earliest stages of neurodiseases and the development of new therapies. This book intends to provide the reader with a short overview of the current achievements in the state-of-the-art imaging modality methods, their highlights, and limitations in neuroscience research and clinical applications. The current state of in-vivo neuroimaging methods in the context of the understanding and diagnosis of mental disorders and relation to the mind is also discussed in a modern compact format, featuring the latest and most relevant research results.

Statistical Parametric Mapping: The Analysis of Functional Brain Images

Statistical Parametric Mapping: The Analysis of Functional Brain Images PDF Author: William D. Penny
Publisher: Elsevier
ISBN: 0080466508
Category : Psychology
Languages : en
Pages : 689

Get Book

Book Description
In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted conceptual framework which allows treatment of all these different modalities. This rests on an understanding of the brain's functional anatomy and the way that measured signals are caused experimentally. The book takes the reader from the basic concepts underlying the analysis of neuroimaging data to cutting edge approaches that would be difficult to find in any other source. Critically, the material is presented in an incremental way so that the reader can understand the precedents for each new development. This book will be particularly useful to neuroscientists engaged in any form of brain mapping; who have to contend with the real-world problems of data analysis and understanding the techniques they are using. It is primarily a scientific treatment and a didactic introduction to the analysis of brain imaging data. It can be used as both a textbook for students and scientists starting to use the techniques, as well as a reference for practicing neuroscientists. The book also serves as a companion to the software packages that have been developed for brain imaging data analysis. An essential reference and companion for users of the SPM software Provides a complete description of the concepts and procedures entailed by the analysis of brain images Offers full didactic treatment of the basic mathematics behind the analysis of brain imaging data Stands as a compendium of all the advances in neuroimaging data analysis over the past decade Adopts an easy to understand and incremental approach that takes the reader from basic statistics to state of the art approaches such as Variational Bayes Structured treatment of data analysis issues that links different modalities and models Includes a series of appendices and tutorial-style chapters that makes even the most sophisticated approaches accessible

Handbook of Neuroimaging Data Analysis

Handbook of Neuroimaging Data Analysis PDF Author: Hernando Ombao
Publisher: CRC Press
ISBN: 1482220989
Category : Mathematics
Languages : en
Pages : 702

Get Book

Book Description
This book explores various state-of-the-art aspects behind the statistical analysis of neuroimaging data. It examines the development of novel statistical approaches to model brain data. Designed for researchers in statistics, biostatistics, computer science, cognitive science, computer engineering, biomedical engineering, applied mathematics, physics, and radiology, the book can also be used as a textbook for graduate-level courses in statistics and biostatistics or as a self-study reference for Ph.D. students in statistics, biostatistics, psychology, neuroscience, and computer science.

Identifying Neuroimaging-Based Markers for Distinguishing Brain Disorders

Identifying Neuroimaging-Based Markers for Distinguishing Brain Disorders PDF Author: Yuhui Du
Publisher: Frontiers Media SA
ISBN: 2889634043
Category :
Languages : en
Pages : 288

Get Book

Book Description
There has been increasing interests in exploring biomarkers from brain images, aiming to have a better understanding and a more effective diagnosis of brain disorders such as schizophrenia, bipolar disorder, schizoaffective disorder, autism spectrum disorder, attention-deficit/hyperactivity disorder, Alzheimer’s disease and so on. Therefore, it is important to identify disease-specific changes for distinguishing healthy controls and patients with brain disorders as well as for differentiating patients with different disorders showing similar clinical symptoms. Biomarkers can be identified from different types of brain Imaging techniques including functional magnetic resonance imaging (fMRI), structural MRI, positron emission tomography (PET), electroencephalography (EEG), and magnetoencephalography (MEG) by using statistical analysis methods. Furthermore, based on measures from brain imaging techniques, machine learning techniques can help to classify or predict disease for individual subjects. In fact, fusion of features from multiple modalities may benefit the understanding of disease mechanism and improve the classification performance. This Research Topic further explores the functional or structural alterations in brain disorders.

Advances of Neuroimaging and Data Analysis

Advances of Neuroimaging and Data Analysis PDF Author: Jue Zhang
Publisher: Frontiers Media SA
ISBN: 2889637506
Category :
Languages : en
Pages : 177

Get Book

Book Description


Medical Image Computing and Computer Assisted Intervention – MICCAI 2022

Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 PDF Author: Linwei Wang
Publisher: Springer Nature
ISBN: 3031164318
Category : Computers
Languages : en
Pages : 796

Get Book

Book Description
The eight-volume set LNCS 13431, 13432, 13433, 13434, 13435, 13436, 13437, and 13438 constitutes the refereed proceedings of the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022, which was held in Singapore in September 2022. The 574 revised full papers presented were carefully reviewed and selected from 1831 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: Brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; heart and lung imaging; dermatology; Part II: Computational (integrative) pathology; computational anatomy and physiology; ophthalmology; fetal imaging; Part III: Breast imaging; colonoscopy; computer aided diagnosis; Part IV: Microscopic image analysis; positron emission tomography; ultrasound imaging; video data analysis; image segmentation I; Part V: Image segmentation II; integration of imaging with non-imaging biomarkers; Part VI: Image registration; image reconstruction; Part VII: Image-Guided interventions and surgery; outcome and disease prediction; surgical data science; surgical planning and simulation; machine learning – domain adaptation and generalization; Part VIII: Machine learning – weakly-supervised learning; machine learning – model interpretation; machine learning – uncertainty; machine learning theory and methodologies.

Multi-Scale Dynamics Modeling of Brain Physiological Functions and Pathological Mechanisms

Multi-Scale Dynamics Modeling of Brain Physiological Functions and Pathological Mechanisms PDF Author: Ying Wu
Publisher: Frontiers Media SA
ISBN: 2832535569
Category : Science
Languages : en
Pages : 120

Get Book

Book Description
The mechanisms of brain physiological functions and pathological mechanisms are crucial for us to understand how the brain works in the normal function such as memory, information processing and attentional perception, or in pathological conditions such as epilepsy, Parkinson's disease, and Alzheimer's diseases. These brain physiological functions and pathological mechanisms generally involve multiple spatial scales of brains, ranging from micro molecules, cellular channels, and meso-scale neuronal networks to the brain regions. To comprehensively understand the neural mechanisms of brain physiological functions and pathological mechanisms, multiple-scale investigations are essential to carry, involving neuronal circuit modeling, neural field modeling, large-scale modeling, data-driven complex network modeling, etc.