Author: T.J. Ulrych
Publisher: Elsevier
ISBN: 0080461344
Category : Science
Languages : en
Pages : 437
Book Description
Information-Based Inversion and Processing with Applications examines different classical and modern aspects of geophysical data processing and inversion with emphasis on the processing of seismic records in applied seismology. Chapter 1 introduces basic concepts including: probability theory (expectation operator and ensemble statistics), elementary principles of parameter estimation, Fourier and z-transform essentials, and issues of orthogonality. In Chapter 2, the linear treatment of time series is provided. Particular attention is paid to Wold decomposition theorem and time series models (AR, MA, and ARMA) and their connection to seismic data analysis problems. Chapter 3 introduces concepts of Information theory and contains a synopsis of those topics that are used throughout the book. Examples are entropy, conditional entropy, Burg's maximum entropy spectral estimator, and mutual information. Chapter 4 provides a description of inverse problems first from a deterministic point of view, then from a probabilistic one. Chapter 5 deals with methods to improve the signal-to-noise ratio of seismic records. Concepts from previous chapters are put in practice for designing prediction error filters for noise attenuation and high-resolution Radon operators. Chapter 6 deals with the topic of deconvolution and the inversion of acoustic impedance. The first part discusses band-limited extrapolation assuming a known wavelet and considers the issue of wavelet estimation. The second part deals with sparse deconvolution using various 'entropy' type norms. Finally, Chapter 7 introduces recent topics of interest to the authors. The emphasis of this book is on applied seismology but researchers in the area of global seismology, and geophysical signal processing and inversion will find material that is relevant to the ubiquitous problem of estimating complex models from a limited number of noisy observations. - Non-conventional approaches to data processing and inversion are presented - Important problems in the area of seismic resolution enhancement are discussed - Contains research material that could inspire graduate students and their supervisors to undertake new research directions in applied seismology and geophysical signal processing
Information-Based Inversion and Processing with Applications
Author: T.J. Ulrych
Publisher: Elsevier
ISBN: 0080461344
Category : Science
Languages : en
Pages : 437
Book Description
Information-Based Inversion and Processing with Applications examines different classical and modern aspects of geophysical data processing and inversion with emphasis on the processing of seismic records in applied seismology. Chapter 1 introduces basic concepts including: probability theory (expectation operator and ensemble statistics), elementary principles of parameter estimation, Fourier and z-transform essentials, and issues of orthogonality. In Chapter 2, the linear treatment of time series is provided. Particular attention is paid to Wold decomposition theorem and time series models (AR, MA, and ARMA) and their connection to seismic data analysis problems. Chapter 3 introduces concepts of Information theory and contains a synopsis of those topics that are used throughout the book. Examples are entropy, conditional entropy, Burg's maximum entropy spectral estimator, and mutual information. Chapter 4 provides a description of inverse problems first from a deterministic point of view, then from a probabilistic one. Chapter 5 deals with methods to improve the signal-to-noise ratio of seismic records. Concepts from previous chapters are put in practice for designing prediction error filters for noise attenuation and high-resolution Radon operators. Chapter 6 deals with the topic of deconvolution and the inversion of acoustic impedance. The first part discusses band-limited extrapolation assuming a known wavelet and considers the issue of wavelet estimation. The second part deals with sparse deconvolution using various 'entropy' type norms. Finally, Chapter 7 introduces recent topics of interest to the authors. The emphasis of this book is on applied seismology but researchers in the area of global seismology, and geophysical signal processing and inversion will find material that is relevant to the ubiquitous problem of estimating complex models from a limited number of noisy observations. - Non-conventional approaches to data processing and inversion are presented - Important problems in the area of seismic resolution enhancement are discussed - Contains research material that could inspire graduate students and their supervisors to undertake new research directions in applied seismology and geophysical signal processing
Publisher: Elsevier
ISBN: 0080461344
Category : Science
Languages : en
Pages : 437
Book Description
Information-Based Inversion and Processing with Applications examines different classical and modern aspects of geophysical data processing and inversion with emphasis on the processing of seismic records in applied seismology. Chapter 1 introduces basic concepts including: probability theory (expectation operator and ensemble statistics), elementary principles of parameter estimation, Fourier and z-transform essentials, and issues of orthogonality. In Chapter 2, the linear treatment of time series is provided. Particular attention is paid to Wold decomposition theorem and time series models (AR, MA, and ARMA) and their connection to seismic data analysis problems. Chapter 3 introduces concepts of Information theory and contains a synopsis of those topics that are used throughout the book. Examples are entropy, conditional entropy, Burg's maximum entropy spectral estimator, and mutual information. Chapter 4 provides a description of inverse problems first from a deterministic point of view, then from a probabilistic one. Chapter 5 deals with methods to improve the signal-to-noise ratio of seismic records. Concepts from previous chapters are put in practice for designing prediction error filters for noise attenuation and high-resolution Radon operators. Chapter 6 deals with the topic of deconvolution and the inversion of acoustic impedance. The first part discusses band-limited extrapolation assuming a known wavelet and considers the issue of wavelet estimation. The second part deals with sparse deconvolution using various 'entropy' type norms. Finally, Chapter 7 introduces recent topics of interest to the authors. The emphasis of this book is on applied seismology but researchers in the area of global seismology, and geophysical signal processing and inversion will find material that is relevant to the ubiquitous problem of estimating complex models from a limited number of noisy observations. - Non-conventional approaches to data processing and inversion are presented - Important problems in the area of seismic resolution enhancement are discussed - Contains research material that could inspire graduate students and their supervisors to undertake new research directions in applied seismology and geophysical signal processing
Seismic Inversion
Author: Gerard T. Schuster
Publisher: SEG Books
ISBN: 156080341X
Category : Science
Languages : en
Pages : 377
Book Description
This book describes the theory and practice of inverting seismic data for the subsurface rock properties of the earth. The primary application is for inverting reflection and/or transmission data from engineering or exploration surveys, but the methods described also can be used for earthquake studies. Seismic Inversion will be of benefit to scientists and advanced students in engineering, earth sciences, and physics. It is desirable that the reader has some familiarity with certain aspects of numerical computation, such as finite-difference solutions to partial differential equations, numerical linear algebra, and the basic physics of wave propagation. For those not familiar with the terminology and methods of seismic exploration, a brief introduction is provided. To truly understand the nuances of seismic inversion, we have to actively practice what we preach (or teach). Therefore, computational labs are provided for most of the chapters, and some field data labs are given as well.
Publisher: SEG Books
ISBN: 156080341X
Category : Science
Languages : en
Pages : 377
Book Description
This book describes the theory and practice of inverting seismic data for the subsurface rock properties of the earth. The primary application is for inverting reflection and/or transmission data from engineering or exploration surveys, but the methods described also can be used for earthquake studies. Seismic Inversion will be of benefit to scientists and advanced students in engineering, earth sciences, and physics. It is desirable that the reader has some familiarity with certain aspects of numerical computation, such as finite-difference solutions to partial differential equations, numerical linear algebra, and the basic physics of wave propagation. For those not familiar with the terminology and methods of seismic exploration, a brief introduction is provided. To truly understand the nuances of seismic inversion, we have to actively practice what we preach (or teach). Therefore, computational labs are provided for most of the chapters, and some field data labs are given as well.
Seismic Data Analysis
Author: Özdoğan Yilmaz
Publisher: SEG Books
ISBN: 1560800941
Category : Science
Languages : en
Pages : 2065
Book Description
Expanding the author's original work on processing to include inversion and interpretation, and including developments in all aspects of conventional processing, this two-volume set is a comprehensive and complete coverage of the modern trends in the seismic industry - from time to depth, from 3D to 4D, from 4D to 4C, and from isotropy to anisotropy.
Publisher: SEG Books
ISBN: 1560800941
Category : Science
Languages : en
Pages : 2065
Book Description
Expanding the author's original work on processing to include inversion and interpretation, and including developments in all aspects of conventional processing, this two-volume set is a comprehensive and complete coverage of the modern trends in the seismic industry - from time to depth, from 3D to 4D, from 4D to 4C, and from isotropy to anisotropy.
Methods and Applications of Inversion
Author: Per C. Hansen
Publisher: Springer
ISBN: 3540488669
Category : Science
Languages : en
Pages : 0
Book Description
This collection of conference papers describes state-of-the-art methodologies and algorithms used in the treatment of inverse problems, focusing on seismology and image processing. The papers also describe new general methodologies for analysis and solution of inverse problems by means of statistical and deterministic algorithms. The book gives a glimpse of recent techniques, many of which are still under development.
Publisher: Springer
ISBN: 3540488669
Category : Science
Languages : en
Pages : 0
Book Description
This collection of conference papers describes state-of-the-art methodologies and algorithms used in the treatment of inverse problems, focusing on seismology and image processing. The papers also describe new general methodologies for analysis and solution of inverse problems by means of statistical and deterministic algorithms. The book gives a glimpse of recent techniques, many of which are still under development.
Active Geophysical Monitoring
Author:
Publisher: Elsevier
ISBN: 0080914462
Category : Science
Languages : en
Pages : 578
Book Description
Active geophysical monitoring is an important new method for studying time-evolving structures and states in the tectonically active Earth's lithosphere. It is based on repeated time-lapse observations and interpretation of rock-induced changes in geophysical fields periodically excited by controlled sources. In this book, the results of strategic systematic development and the application of new technologies for active geophysical monitoring are presented. The authors demonstrate that active monitoring may drastically change solid Earth geophysics, through the acquisition of substantially new information, based on high accuracy and real-time observations. Active monitoring also provides new means for disaster mitigation, in conjunction with substantial international and interdisciplinary cooperation. - Introduction of a new concept - Most experienced authors in the field - Comprehensiveness
Publisher: Elsevier
ISBN: 0080914462
Category : Science
Languages : en
Pages : 578
Book Description
Active geophysical monitoring is an important new method for studying time-evolving structures and states in the tectonically active Earth's lithosphere. It is based on repeated time-lapse observations and interpretation of rock-induced changes in geophysical fields periodically excited by controlled sources. In this book, the results of strategic systematic development and the application of new technologies for active geophysical monitoring are presented. The authors demonstrate that active monitoring may drastically change solid Earth geophysics, through the acquisition of substantially new information, based on high accuracy and real-time observations. Active monitoring also provides new means for disaster mitigation, in conjunction with substantial international and interdisciplinary cooperation. - Introduction of a new concept - Most experienced authors in the field - Comprehensiveness
Fractal Models in Exploration Geophysics
Author: V.P. Dimri
Publisher: Elsevier
ISBN: 0080914446
Category : Science
Languages : en
Pages : 184
Book Description
Researchers in the field of exploration geophysics have developed new methods for the acquisition, processing and interpretation of gravity and magnetic data, based on detailed investigations of bore wells around the globe. Fractal Models in Exploration Geophysics describes fractal-based models for characterizing these complex subsurface geological structures. The authors introduce the inverse problem using a fractal approach which they then develop with the implementation of a global optimization algorithm for seismic data: very fast simulated annealing (VFSA). This approach provides high-resolution inverse modeling results—particularly useful for reservoir characterization. - Serves as a valuable resource for researchers studying the application of fractals in exploration, and for practitioners directly applying field data for geo-modeling - Discusses the basic principles and practical applications of time-lapse seismic reservoir monitoring technology - application rapidly advancing topic - Provides the fundamentals for those interested in reservoir geophysics and reservoir simulation study - Demonstrates an example of reservoir simulation for enhanced oil recovery using CO2 injection
Publisher: Elsevier
ISBN: 0080914446
Category : Science
Languages : en
Pages : 184
Book Description
Researchers in the field of exploration geophysics have developed new methods for the acquisition, processing and interpretation of gravity and magnetic data, based on detailed investigations of bore wells around the globe. Fractal Models in Exploration Geophysics describes fractal-based models for characterizing these complex subsurface geological structures. The authors introduce the inverse problem using a fractal approach which they then develop with the implementation of a global optimization algorithm for seismic data: very fast simulated annealing (VFSA). This approach provides high-resolution inverse modeling results—particularly useful for reservoir characterization. - Serves as a valuable resource for researchers studying the application of fractals in exploration, and for practitioners directly applying field data for geo-modeling - Discusses the basic principles and practical applications of time-lapse seismic reservoir monitoring technology - application rapidly advancing topic - Provides the fundamentals for those interested in reservoir geophysics and reservoir simulation study - Demonstrates an example of reservoir simulation for enhanced oil recovery using CO2 injection
Seismic Stratigraphy, Basin Analysis and Reservoir Characterisation
Author: P.C.H. Veeken
Publisher: Elsevier
ISBN: 0080466303
Category : Science
Languages : en
Pages : 523
Book Description
The interest in seismic stratigraphic techniques to interpret reflection datasets is well established. The advent of sophisticated subsurface reservoir studies and 4D monitoring, for optimising the hydrocarbon production in existing fields, does demonstrate the importance of the 3D seismic methodology. The added value of reflection seismics to the petroleum industry has clearly been proven over the last decades. Seismic profiles and 3D cubes form a vast and robust data source to unravel the structure of the subsurface. It gets nowadays exploited in ever greater detail. Larger offsets and velocity anisotropy effects give for instance access to more details on reservoir flow properties like fracture density, porosity and permeability distribution, Elastic inversion and modelling may tell something about the change in petrophysical parameters. Seismic investigations provide a vital tool for the delineation of subtle hydrocarbon traps. They are the basis for understanding the regional basin framework and the stratigraphic subdivision. Seismic stratigraphy combines two very different scales of observation: the seismic and well-control. The systematic approach applied in seismic stratigraphy explains why many workers are using the principles to evaluate their seismic observations. The here presented modern geophysical techniques allow more accurate prediction of the changes in subsurface geology. Dynamics of sedimentary environments are discussed with its relation to global controling factors and a link is made to high-resolution sequence stratigraphy. 'Seismic Stratigraphy Basin Analysis and Reservoir Characterisation' summarizes basic seismic interpretation techniques and demonstrates the benefits of intergrated reservoir studies for hydrocarbon exploration. Topics are presented from a practical point of view and are supported by well-illustrated case histories. The reader (student as well as professional geophysicists, geologists and reservoir engineers) is taken from a basic level to more advanced study techniques.* Overview reflection seismic methods and its limitations.* Link between basic seismic stratigraphic principles and high resolution sequence stratigraphy.* Description of various techniques for seismic reservoir characterization and synthetic modelling.* Overview nversion techniques, AVO and seismic attributes analysis.
Publisher: Elsevier
ISBN: 0080466303
Category : Science
Languages : en
Pages : 523
Book Description
The interest in seismic stratigraphic techniques to interpret reflection datasets is well established. The advent of sophisticated subsurface reservoir studies and 4D monitoring, for optimising the hydrocarbon production in existing fields, does demonstrate the importance of the 3D seismic methodology. The added value of reflection seismics to the petroleum industry has clearly been proven over the last decades. Seismic profiles and 3D cubes form a vast and robust data source to unravel the structure of the subsurface. It gets nowadays exploited in ever greater detail. Larger offsets and velocity anisotropy effects give for instance access to more details on reservoir flow properties like fracture density, porosity and permeability distribution, Elastic inversion and modelling may tell something about the change in petrophysical parameters. Seismic investigations provide a vital tool for the delineation of subtle hydrocarbon traps. They are the basis for understanding the regional basin framework and the stratigraphic subdivision. Seismic stratigraphy combines two very different scales of observation: the seismic and well-control. The systematic approach applied in seismic stratigraphy explains why many workers are using the principles to evaluate their seismic observations. The here presented modern geophysical techniques allow more accurate prediction of the changes in subsurface geology. Dynamics of sedimentary environments are discussed with its relation to global controling factors and a link is made to high-resolution sequence stratigraphy. 'Seismic Stratigraphy Basin Analysis and Reservoir Characterisation' summarizes basic seismic interpretation techniques and demonstrates the benefits of intergrated reservoir studies for hydrocarbon exploration. Topics are presented from a practical point of view and are supported by well-illustrated case histories. The reader (student as well as professional geophysicists, geologists and reservoir engineers) is taken from a basic level to more advanced study techniques.* Overview reflection seismic methods and its limitations.* Link between basic seismic stratigraphic principles and high resolution sequence stratigraphy.* Description of various techniques for seismic reservoir characterization and synthetic modelling.* Overview nversion techniques, AVO and seismic attributes analysis.
Seismic Inversion
Author: Yanghua Wang
Publisher: John Wiley & Sons
ISBN: 1119258049
Category : Science
Languages : en
Pages : 256
Book Description
Seismic inversion aims to reconstruct a quantitative model of the Earth subsurface, by solving an inverse problem based on seismic measurements. There are at least three fundamental issues to be solved simultaneously: non-linearity, non-uniqueness, and instability. This book covers the basic theory and techniques used in seismic inversion, corresponding to these three issues, emphasising the physical interpretation of theoretical concepts and practical solutions. This book is written for master and doctoral students who need to understand the mathematical tools and the engineering aspects of the inverse problem needed to obtain geophysically meaningful solutions. Building on the basic theory of linear inverse problems, the methodologies of seismic inversion are explained in detail, including ray-impedance inversion and waveform tomography etc. The application methodologies are categorised into convolutional and wave-equation based groups. This systematic presentation simplifies the subject and enables an in-depth understanding of seismic inversion. This book also provides a practical guide to reservoir geophysicists who are attempting quantitative reservoir characterisation based on seismic data. Philosophically, the seismic inverse problem allows for a range of possible solutions, but the techniques described herein enable geophysicists to exclude models that cannot satisfy the available data. This book summarises the author’s extensive experience in both industry and academia and includes innovative techniques not previously published.
Publisher: John Wiley & Sons
ISBN: 1119258049
Category : Science
Languages : en
Pages : 256
Book Description
Seismic inversion aims to reconstruct a quantitative model of the Earth subsurface, by solving an inverse problem based on seismic measurements. There are at least three fundamental issues to be solved simultaneously: non-linearity, non-uniqueness, and instability. This book covers the basic theory and techniques used in seismic inversion, corresponding to these three issues, emphasising the physical interpretation of theoretical concepts and practical solutions. This book is written for master and doctoral students who need to understand the mathematical tools and the engineering aspects of the inverse problem needed to obtain geophysically meaningful solutions. Building on the basic theory of linear inverse problems, the methodologies of seismic inversion are explained in detail, including ray-impedance inversion and waveform tomography etc. The application methodologies are categorised into convolutional and wave-equation based groups. This systematic presentation simplifies the subject and enables an in-depth understanding of seismic inversion. This book also provides a practical guide to reservoir geophysicists who are attempting quantitative reservoir characterisation based on seismic data. Philosophically, the seismic inverse problem allows for a range of possible solutions, but the techniques described herein enable geophysicists to exclude models that cannot satisfy the available data. This book summarises the author’s extensive experience in both industry and academia and includes innovative techniques not previously published.
Coding and Decoding: Seismic Data
Author: Luc T. Ikelle
Publisher: Elsevier
ISBN: 0080914454
Category : Science
Languages : en
Pages : 619
Book Description
Currently, the acquisition of seismic surveys is performed as a sequential operation in which shots are computed separately, one after the other. This approach is similar to that of multiple-access technology, which is widely used in cellular communications to allow several subscribers to share the same telephone line. The cost of performing various shots simultaneously is almost identical to that of one shot; thus, the savings in time and money expected from using the multishooting approach for computing seismic surveys compared to the current approach are enormous. By using this approach, the long-standing problem of simulating a three-dimensional seismic survey can be reduced to a matter of weeks and not years, as is currently the case. - Investigates how to collect, stimulate, and process multishooting data - Addresses the improvements in seismic characterization and resolution one can expect from multishooting data - Aims to educate the oil and gas exploration and production business of the benefits of multishooting data, and to influence their day-to-day surveying techniques
Publisher: Elsevier
ISBN: 0080914454
Category : Science
Languages : en
Pages : 619
Book Description
Currently, the acquisition of seismic surveys is performed as a sequential operation in which shots are computed separately, one after the other. This approach is similar to that of multiple-access technology, which is widely used in cellular communications to allow several subscribers to share the same telephone line. The cost of performing various shots simultaneously is almost identical to that of one shot; thus, the savings in time and money expected from using the multishooting approach for computing seismic surveys compared to the current approach are enormous. By using this approach, the long-standing problem of simulating a three-dimensional seismic survey can be reduced to a matter of weeks and not years, as is currently the case. - Investigates how to collect, stimulate, and process multishooting data - Addresses the improvements in seismic characterization and resolution one can expect from multishooting data - Aims to educate the oil and gas exploration and production business of the benefits of multishooting data, and to influence their day-to-day surveying techniques
Subsurface Hydrology
Author: David W. Hyndman
Publisher: John Wiley & Sons
ISBN: 1118671805
Category : Science
Languages : en
Pages : 445
Book Description
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 171. Groundwater is a critical resource and the PrinciPal source of drinking water for over 1.5 billion people. In 2001, the National Research Council cited as a "grand challenge" our need to understand the processes that control water movement in the subsurface. This volume faces that challenge in terms of data integration between complex, multi-scale hydrologie processes, and their links to other physical, chemical, and biological processes at multiple scales. Subsurface Hydrology: Data Integration for Properties and Processes presents the current state of the science in four aspects: Approaches to hydrologie data integration Data integration for characterization of hydrologie properties Data integration for understanding hydrologie processes Meta-analysis of current interpretations Scientists and researchers in the field, the laboratory, and the classroom will find this work an important resource in advancing our understanding of subsurface water movement.
Publisher: John Wiley & Sons
ISBN: 1118671805
Category : Science
Languages : en
Pages : 445
Book Description
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 171. Groundwater is a critical resource and the PrinciPal source of drinking water for over 1.5 billion people. In 2001, the National Research Council cited as a "grand challenge" our need to understand the processes that control water movement in the subsurface. This volume faces that challenge in terms of data integration between complex, multi-scale hydrologie processes, and their links to other physical, chemical, and biological processes at multiple scales. Subsurface Hydrology: Data Integration for Properties and Processes presents the current state of the science in four aspects: Approaches to hydrologie data integration Data integration for characterization of hydrologie properties Data integration for understanding hydrologie processes Meta-analysis of current interpretations Scientists and researchers in the field, the laboratory, and the classroom will find this work an important resource in advancing our understanding of subsurface water movement.