Infinite-Dimensional Dynamical Systems in Mechanics and Physics

Infinite-Dimensional Dynamical Systems in Mechanics and Physics PDF Author: Roger Temam
Publisher: Springer Science & Business Media
ISBN: 9780387948669
Category : Mathematics
Languages : en
Pages : 690

Get Book Here

Book Description
In this book the author presents the dynamical systems in infinite dimension, especially those generated by dissipative partial differential equations. This book attempts a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics and in other areas of sciences and technology. This second edition has been updated and extended.

Infinite Dimensional Dynamical Systems

Infinite Dimensional Dynamical Systems PDF Author: John Mallet-Paret
Publisher: Springer Science & Business Media
ISBN: 1461445221
Category : Mathematics
Languages : en
Pages : 495

Get Book Here

Book Description
​This collection covers a wide range of topics of infinite dimensional dynamical systems generated by parabolic partial differential equations, hyperbolic partial differential equations, solitary equations, lattice differential equations, delay differential equations, and stochastic differential equations. Infinite dimensional dynamical systems are generated by evolutionary equations describing the evolutions in time of systems whose status must be depicted in infinite dimensional phase spaces. Studying the long-term behaviors of such systems is important in our understanding of their spatiotemporal pattern formation and global continuation, and has been among major sources of motivation and applications of new developments of nonlinear analysis and other mathematical theories. Theories of the infinite dimensional dynamical systems have also found more and more important applications in physical, chemical, and life sciences. This book collects 19 papers from 48 invited lecturers to the International Conference on Infinite Dimensional Dynamical Systems held at York University, Toronto, in September of 2008. As the conference was dedicated to Professor George Sell from University of Minnesota on the occasion of his 70th birthday, this collection reflects the pioneering work and influence of Professor Sell in a few core areas of dynamical systems, including non-autonomous dynamical systems, skew-product flows, invariant manifolds theory, infinite dimensional dynamical systems, approximation dynamics, and fluid flows.​

Attractors for infinite-dimensional non-autonomous dynamical systems

Attractors for infinite-dimensional non-autonomous dynamical systems PDF Author: Alexandre Carvalho
Publisher: Springer Science & Business Media
ISBN: 1461445817
Category : Mathematics
Languages : en
Pages : 434

Get Book Here

Book Description
The book treats the theory of attractors for non-autonomous dynamical systems. The aim of the book is to give a coherent account of the current state of the theory, using the framework of processes to impose the minimum of restrictions on the nature of the non-autonomous dependence. The book is intended as an up-to-date summary of the field, but much of it will be accessible to beginning graduate students. Clear indications will be given as to which material is fundamental and which is more advanced, so that those new to the area can quickly obtain an overview, while those already involved can pursue the topics we cover more deeply.

Infinite-Dimensional Dynamical Systems

Infinite-Dimensional Dynamical Systems PDF Author: James C. Robinson
Publisher: Cambridge University Press
ISBN: 9780521632041
Category : Mathematics
Languages : en
Pages : 488

Get Book Here

Book Description
This book treats the theory of global attractors, a recent development in the theory of partial differential equations, in a way that also includes much of the traditional elements of the subject. As such it gives a quick but directed introduction to some fundamental concepts, and by the end proceeds to current research problems. Since the subject is relatively new, this is the first book to attempt to treat these various topics in a unified and didactic way. It is intended to be suitable for first year graduate students.

Hamiltonian Dynamical Systems and Applications

Hamiltonian Dynamical Systems and Applications PDF Author: Walter Craig
Publisher: Springer Science & Business Media
ISBN: 1402069642
Category : Mathematics
Languages : en
Pages : 450

Get Book Here

Book Description
This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems. Applications are also presented to several important areas of research, including problems in classical mechanics, continuum mechanics, and partial differential equations.

Infinite-dimensional Analysis: Operators In Hilbert Space; Stochastic Calculus Via Representations, And Duality Theory

Infinite-dimensional Analysis: Operators In Hilbert Space; Stochastic Calculus Via Representations, And Duality Theory PDF Author: Palle Jorgensen
Publisher: World Scientific
ISBN: 9811225796
Category : Mathematics
Languages : en
Pages : 253

Get Book Here

Book Description
The purpose of this book is to make available to beginning graduate students, and to others, some core areas of analysis which serve as prerequisites for new developments in pure and applied areas. We begin with a presentation (Chapters 1 and 2) of a selection of topics from the theory of operators in Hilbert space, algebras of operators, and their corresponding spectral theory. This is a systematic presentation of interrelated topics from infinite-dimensional and non-commutative analysis; again, with view to applications. Chapter 3 covers a study of representations of the canonical commutation relations (CCRs); with emphasis on the requirements of infinite-dimensional calculus of variations, often referred to as Ito and Malliavin calculus, Chapters 4-6. This further connects to key areas in quantum physics.

Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems

Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems PDF Author: Mariana Haragus
Publisher: Springer Science & Business Media
ISBN: 0857291122
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
An extension of different lectures given by the authors, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems provides the reader with a comprehensive overview of these topics. Starting with the simplest bifurcation problems arising for ordinary differential equations in one- and two-dimensions, this book describes several tools from the theory of infinite dimensional dynamical systems, allowing the reader to treat more complicated bifurcation problems, such as bifurcations arising in partial differential equations. Attention is restricted to the study of local bifurcations with a focus upon the center manifold reduction and the normal form theory; two methods that have been widely used during the last decades. Through use of step-by-step examples and exercises, a number of possible applications are illustrated, and allow the less familiar reader to use this reduction method by checking some clear assumptions. Written by recognised experts in the field of center manifold and normal form theory this book provides a much-needed graduate level text on bifurcation theory, center manifolds and normal form theory. It will appeal to graduate students and researchers working in dynamical system theory.

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory PDF Author: Yuri Kuznetsov
Publisher: Springer Science & Business Media
ISBN: 1475739788
Category : Mathematics
Languages : en
Pages : 648

Get Book Here

Book Description
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

Infinite Dimensional And Finite Dimensional Stochastic Equations And Applications In Physics

Infinite Dimensional And Finite Dimensional Stochastic Equations And Applications In Physics PDF Author: Wilfried Grecksch
Publisher: World Scientific
ISBN: 9811209804
Category : Science
Languages : en
Pages : 261

Get Book Here

Book Description
This volume contains survey articles on various aspects of stochastic partial differential equations (SPDEs) and their applications in stochastic control theory and in physics.The topics presented in this volume are:This book is intended not only for graduate students in mathematics or physics, but also for mathematicians, mathematical physicists, theoretical physicists, and science researchers interested in the physical applications of the theory of stochastic processes.

Spinors and Space-Time: Volume 2, Spinor and Twistor Methods in Space-Time Geometry

Spinors and Space-Time: Volume 2, Spinor and Twistor Methods in Space-Time Geometry PDF Author: Roger Penrose
Publisher: Cambridge University Press
ISBN: 9780521347860
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
Spinor and Twistor Methods in Space-Time Geometry introduces the theory of twistors, and studies in detail how the theory of twistors and 2-spinors can be applied to the study of space-time. Twistors have, in recent years, attracted increasing attention as a mathematical tool and as a means of gaining new insights into the structure of physical laws. This volume also includes a comprehensive treatment of the conformal approach to space-time infinity with results on general-relativistic mass and angular momentum, a detailed spinorial classification of the full space-time curvature tensor, and an account of the geometry of null geodesics.