Author: Skyler J. Cranmer
Publisher: Cambridge University Press
ISBN: 1107158125
Category : Business & Economics
Languages : en
Pages : 317
Book Description
Pioneering introduction of unprecedented breadth and scope to inferential and statistical methods for network analysis.
Inferential Network Analysis
Author: Skyler J. Cranmer
Publisher: Cambridge University Press
ISBN: 1107158125
Category : Business & Economics
Languages : en
Pages : 317
Book Description
Pioneering introduction of unprecedented breadth and scope to inferential and statistical methods for network analysis.
Publisher: Cambridge University Press
ISBN: 1107158125
Category : Business & Economics
Languages : en
Pages : 317
Book Description
Pioneering introduction of unprecedented breadth and scope to inferential and statistical methods for network analysis.
Social Network Analysis
Author: Song Yang
Publisher: SAGE Publications, Incorporated
ISBN: 9781483325217
Category : Social Science
Languages : en
Pages : 0
Book Description
Social Network Analysis: Methods and Examples by Song Yang, Franziska B. Keller, and Lu Zheng prepares social science students to conduct their own social network analysis (SNA) by covering basic methodological tools along with illustrative examples from various fields. This innovative book takes a conceptual rather than a mathematical approach as it discusses the connection between what SNA methods have to offer and how those methods are used in research design, data collection, and analysis. Four substantive applications chapters provide examples from politics, work and organizations, mental and physical health, and crime and terrorism studies.
Publisher: SAGE Publications, Incorporated
ISBN: 9781483325217
Category : Social Science
Languages : en
Pages : 0
Book Description
Social Network Analysis: Methods and Examples by Song Yang, Franziska B. Keller, and Lu Zheng prepares social science students to conduct their own social network analysis (SNA) by covering basic methodological tools along with illustrative examples from various fields. This innovative book takes a conceptual rather than a mathematical approach as it discusses the connection between what SNA methods have to offer and how those methods are used in research design, data collection, and analysis. Four substantive applications chapters provide examples from politics, work and organizations, mental and physical health, and crime and terrorism studies.
Exponential Random Graph Models for Social Networks
Author: Dean Lusher
Publisher: Cambridge University Press
ISBN: 0521193567
Category : Business & Economics
Languages : en
Pages : 361
Book Description
This book provides an account of the theoretical and methodological underpinnings of exponential random graph models (ERGMs).
Publisher: Cambridge University Press
ISBN: 0521193567
Category : Business & Economics
Languages : en
Pages : 361
Book Description
This book provides an account of the theoretical and methodological underpinnings of exponential random graph models (ERGMs).
Statistical Analysis of Network Data with R
Author: Eric D. Kolaczyk
Publisher: Springer
ISBN: 1493909835
Category : Computers
Languages : en
Pages : 214
Book Description
Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).
Publisher: Springer
ISBN: 1493909835
Category : Computers
Languages : en
Pages : 214
Book Description
Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).
Probabilistic Foundations of Statistical Network Analysis
Author: Harry Crane
Publisher: CRC Press
ISBN: 1351807331
Category : Business & Economics
Languages : en
Pages : 257
Book Description
Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks. The author’s incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics.
Publisher: CRC Press
ISBN: 1351807331
Category : Business & Economics
Languages : en
Pages : 257
Book Description
Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks. The author’s incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics.
Statistical Analysis of Network Data
Author: Eric D. Kolaczyk
Publisher: Springer Science & Business Media
ISBN: 0387881468
Category : Computers
Languages : en
Pages : 397
Book Description
In recent years there has been an explosion of network data – that is, measu- ments that are either of or from a system conceptualized as a network – from se- ingly all corners of science. The combination of an increasingly pervasive interest in scienti c analysis at a systems level and the ever-growing capabilities for hi- throughput data collection in various elds has fueled this trend. Researchers from biology and bioinformatics to physics, from computer science to the information sciences, and from economics to sociology are more and more engaged in the c- lection and statistical analysis of data from a network-centric perspective. Accordingly, the contributions to statistical methods and modeling in this area have come from a similarly broad spectrum of areas, often independently of each other. Many books already have been written addressing network data and network problems in speci c individual disciplines. However, there is at present no single book that provides a modern treatment of a core body of knowledge for statistical analysis of network data that cuts across the various disciplines and is organized rather according to a statistical taxonomy of tasks and techniques. This book seeks to ll that gap and, as such, it aims to contribute to a growing trend in recent years to facilitate the exchange of knowledge across the pre-existing boundaries between those disciplines that play a role in what is coming to be called ‘network science.
Publisher: Springer Science & Business Media
ISBN: 0387881468
Category : Computers
Languages : en
Pages : 397
Book Description
In recent years there has been an explosion of network data – that is, measu- ments that are either of or from a system conceptualized as a network – from se- ingly all corners of science. The combination of an increasingly pervasive interest in scienti c analysis at a systems level and the ever-growing capabilities for hi- throughput data collection in various elds has fueled this trend. Researchers from biology and bioinformatics to physics, from computer science to the information sciences, and from economics to sociology are more and more engaged in the c- lection and statistical analysis of data from a network-centric perspective. Accordingly, the contributions to statistical methods and modeling in this area have come from a similarly broad spectrum of areas, often independently of each other. Many books already have been written addressing network data and network problems in speci c individual disciplines. However, there is at present no single book that provides a modern treatment of a core body of knowledge for statistical analysis of network data that cuts across the various disciplines and is organized rather according to a statistical taxonomy of tasks and techniques. This book seeks to ll that gap and, as such, it aims to contribute to a growing trend in recent years to facilitate the exchange of knowledge across the pre-existing boundaries between those disciplines that play a role in what is coming to be called ‘network science.
Understanding Social Networks
Author: Charles Kadushin
Publisher: Oxford University Press
ISBN: 0195379462
Category : Business & Economics
Languages : en
Pages : 265
Book Description
Understanding Social Networks explains the big ideas that underlie social networks, covering fundamental concepts then discussing networks and their core themes in increasing order of complexity.
Publisher: Oxford University Press
ISBN: 0195379462
Category : Business & Economics
Languages : en
Pages : 265
Book Description
Understanding Social Networks explains the big ideas that underlie social networks, covering fundamental concepts then discussing networks and their core themes in increasing order of complexity.
Theories of Communication Networks
Author: Peter R. Monge
Publisher: Oxford University Press
ISBN: 019803637X
Category : Business & Economics
Languages : en
Pages : 431
Book Description
To date, most network research contains one or more of five major problems. First, it tends to be atheoretical, ignoring the various social theories that contain network implications. Second, it explores single levels of analysis rather than the multiple levels out of which most networks are comprised. Third, network analysis has employed very little the insights from contemporary complex systems analysis and computer simulations. Foruth, it typically uses descriptive rather than inferential statistics, thus robbing it of the ability to make claims about the larger universe of networks. Finally, almost all the research is static and cross-sectional rather than dynamic. Theories of Communication Networks presents solutions to all five problems. The authors develop a multitheoretical model that relates different social science theories with different network properties. This model is multilevel, providing a network decomposition that applies the various social theories to all network levels: individuals, dyads, triples, groups, and the entire network. The book then establishes a model from the perspective of complex adaptive systems and demonstrates how to use Blanche, an agent-based network computer simulation environment, to generate and test network theories and hypotheses. It presents recent developments in network statistical analysis, the p* family, which provides a basis for valid multilevel statistical inferences regarding networks. Finally, it shows how to relate communication networks to other networks, thus providing the basis in conjunction with computer simulations to study the emergence of dynamic organizational networks.
Publisher: Oxford University Press
ISBN: 019803637X
Category : Business & Economics
Languages : en
Pages : 431
Book Description
To date, most network research contains one or more of five major problems. First, it tends to be atheoretical, ignoring the various social theories that contain network implications. Second, it explores single levels of analysis rather than the multiple levels out of which most networks are comprised. Third, network analysis has employed very little the insights from contemporary complex systems analysis and computer simulations. Foruth, it typically uses descriptive rather than inferential statistics, thus robbing it of the ability to make claims about the larger universe of networks. Finally, almost all the research is static and cross-sectional rather than dynamic. Theories of Communication Networks presents solutions to all five problems. The authors develop a multitheoretical model that relates different social science theories with different network properties. This model is multilevel, providing a network decomposition that applies the various social theories to all network levels: individuals, dyads, triples, groups, and the entire network. The book then establishes a model from the perspective of complex adaptive systems and demonstrates how to use Blanche, an agent-based network computer simulation environment, to generate and test network theories and hypotheses. It presents recent developments in network statistical analysis, the p* family, which provides a basis for valid multilevel statistical inferences regarding networks. Finally, it shows how to relate communication networks to other networks, thus providing the basis in conjunction with computer simulations to study the emergence of dynamic organizational networks.
An Introduction to Exponential Random Graph Modeling
Author: Jenine K. Harris
Publisher: SAGE Publications
ISBN: 148332205X
Category : Social Science
Languages : en
Pages : 138
Book Description
This volume introduces the basic concepts of Exponential Random Graph Modeling (ERGM), gives examples of why it is used, and shows the reader how to conduct basic ERGM analyses in their own research. ERGM is a statistical approach to modeling social network structure that goes beyond the descriptive methods conventionally used in social network analysis. Although it was developed to handle the inherent non-independence of network data, the results of ERGM are interpreted in similar ways to logistic regression, making this a very useful method for examining social systems. Recent advances in statistical software have helped make ERGM accessible to social scientists, but a concise guide to using ERGM has been lacking. This book fills that gap, by using examples from public health, and walking the reader through the process of ERGM model-building using R statistical software and the statnet package. An Introduction to Exponential Random Graph Modeling is a part of SAGE’s Quantitative Applications in the Social Sciences (QASS) series, which has helped countless students, instructors, and researchers learn cutting-edge quantitative techniques.
Publisher: SAGE Publications
ISBN: 148332205X
Category : Social Science
Languages : en
Pages : 138
Book Description
This volume introduces the basic concepts of Exponential Random Graph Modeling (ERGM), gives examples of why it is used, and shows the reader how to conduct basic ERGM analyses in their own research. ERGM is a statistical approach to modeling social network structure that goes beyond the descriptive methods conventionally used in social network analysis. Although it was developed to handle the inherent non-independence of network data, the results of ERGM are interpreted in similar ways to logistic regression, making this a very useful method for examining social systems. Recent advances in statistical software have helped make ERGM accessible to social scientists, but a concise guide to using ERGM has been lacking. This book fills that gap, by using examples from public health, and walking the reader through the process of ERGM model-building using R statistical software and the statnet package. An Introduction to Exponential Random Graph Modeling is a part of SAGE’s Quantitative Applications in the Social Sciences (QASS) series, which has helped countless students, instructors, and researchers learn cutting-edge quantitative techniques.
The Oxford Handbook of Political Networks
Author: Jennifer Nicoll Victor
Publisher: Oxford University Press
ISBN: 0190228210
Category : Political Science
Languages : en
Pages : 1011
Book Description
Politics is intuitively about relationships, but until recently the network perspective has not been a dominant part of the methodological paradigm that political scientists use to study politics. This volume is a foundational statement about networks in the study of politics.
Publisher: Oxford University Press
ISBN: 0190228210
Category : Political Science
Languages : en
Pages : 1011
Book Description
Politics is intuitively about relationships, but until recently the network perspective has not been a dominant part of the methodological paradigm that political scientists use to study politics. This volume is a foundational statement about networks in the study of politics.