Relationship Inference with Familias and R

Relationship Inference with Familias and R PDF Author: Thore Egeland
Publisher: Academic Press
ISBN: 012802626X
Category : Law
Languages : en
Pages : 255

Get Book Here

Book Description
Relationship Inference in Familias and R discusses the use of Familias and R software to understand genetic kinship of two or more DNA samples. This software is commonly used for forensic cases to establish paternity, identify victims or analyze genetic evidence at crime scenes when kinship is involved. The book explores utilizing Familias software and R packages for difficult situations including inbred families, mutations and missing data from degraded DNA. The book additionally addresses identification following mass disasters, familial searching, non-autosomal marker analysis and relationship inference using linked markers. The second part of the book focuses on more statistical issues such as estimation and uncertainty of model parameters. Although written for use with human DNA, the principles can be applied to non-human genetics for animal pedigrees and/or analysis of plants for agriculture purposes. The book contains necessary tools to evaluate any type of forensic case where kinship is an issue. - This volume focuses on the core material and omits most general background material on probability, statistics and forensic genetics - Each chapter includes exercises with available solutions - The web page familias.name contains supporting material

Relationship Inference with Familias and R

Relationship Inference with Familias and R PDF Author: Thore Egeland
Publisher: Academic Press
ISBN: 012802626X
Category : Law
Languages : en
Pages : 255

Get Book Here

Book Description
Relationship Inference in Familias and R discusses the use of Familias and R software to understand genetic kinship of two or more DNA samples. This software is commonly used for forensic cases to establish paternity, identify victims or analyze genetic evidence at crime scenes when kinship is involved. The book explores utilizing Familias software and R packages for difficult situations including inbred families, mutations and missing data from degraded DNA. The book additionally addresses identification following mass disasters, familial searching, non-autosomal marker analysis and relationship inference using linked markers. The second part of the book focuses on more statistical issues such as estimation and uncertainty of model parameters. Although written for use with human DNA, the principles can be applied to non-human genetics for animal pedigrees and/or analysis of plants for agriculture purposes. The book contains necessary tools to evaluate any type of forensic case where kinship is an issue. - This volume focuses on the core material and omits most general background material on probability, statistics and forensic genetics - Each chapter includes exercises with available solutions - The web page familias.name contains supporting material

Kendall's Advanced Theory of Statistics, Distribution Theory

Kendall's Advanced Theory of Statistics, Distribution Theory PDF Author: Maurice George Kendall
Publisher: Wiley-Interscience
ISBN:
Category : Business & Economics
Languages : en
Pages : 712

Get Book Here

Book Description
This major revision contains a largely new chapter 7 providing an extensive discussion of the bivariate and multivariate versions of the standard distributions and families. Chapter 16 has been enlarged to cover multivariate sampling theory, an updated version of material previously found inthe old Volume III. The previous chapters 7 and 8 have been condensed into a single chapter providing an introduction to statistical inference. Elsewhere, major updates include new material on skewness and kurtosis, hazard rate distributions, the bootstrap, the evaluation of the multivariate normalintegral and ratios of quadratic forms. The new edition includes over 200 new references, 40 new exercises and 20 further examples in the main text. In addition, all the text examples have been given titles, and these are listed at the front of the book for easier reference.

Authentic Joy

Authentic Joy PDF Author: Matik Nicholls
Publisher:
ISBN: 9781686030734
Category :
Languages : en
Pages : 167

Get Book Here

Book Description
Govinda gave his life to Christ at age twenty and got married at age twenty-three. Will this young Christian's marriage to Sanya survive? Surrounded by empty religion and questionable church leaders, he will need to find a real faith in God to make it through life.

Theory-Based Data Analysis for the Social Sciences

Theory-Based Data Analysis for the Social Sciences PDF Author: Carol S. Aneshensel
Publisher: SAGE
ISBN: 1412994357
Category : Reference
Languages : en
Pages : 473

Get Book Here

Book Description
This book presents the elaboration model for the multivariate analysis of observational quantitative data. This model entails the systematic introduction of "third variables" to the analysis of a focal relationship between one independent and one dependent variable to ascertain whether an inference of causality is justified. Two complementary strategies are used: an exclusionary strategy that rules out alternative explanations such as spuriousness and redundancy with competing theories, and an inclusive strategy that connects the focal relationship to a network of other relationships, including the hypothesized causal mechanisms linking the focal independent variable to the focal dependent variable. The primary emphasis is on the translation of theory into a logical analytic strategy and the interpretation of results. The elaboration model is applied with case studies drawn from newly published research that serve as prototypes for aligning theory and the data analytic plan used to test it; these studies are drawn from a wide range of substantive topics in the social sciences, such as emotion management in the workplace, subjective age identification during the transition to adulthood, and the relationship between religious and paranormal beliefs. The second application of the elaboration model is in the form of original data analysis presented in two Analysis Journals that are integrated throughout the text and implement the full elaboration model. Using real data, not contrived examples, the text provides a step-by-step guide through the process of integrating theory with data analysis in order to arrive at meaningful answers to research questions.

Statistical Inference as Severe Testing

Statistical Inference as Severe Testing PDF Author: Deborah G. Mayo
Publisher: Cambridge University Press
ISBN: 1108563309
Category : Mathematics
Languages : en
Pages : 503

Get Book Here

Book Description
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.

Inference to the Best Explanation

Inference to the Best Explanation PDF Author: Peter Lipton
Publisher: Taylor & Francis
ISBN: 9780415242035
Category : Philosophy
Languages : en
Pages : 236

Get Book Here

Book Description
Inference to the Best Explanation is an unrivalled exposition of a theory of particular interest to students both of epistemology and the philosophy of science.

Information Theory, Inference and Learning Algorithms

Information Theory, Inference and Learning Algorithms PDF Author: David J. C. MacKay
Publisher: Cambridge University Press
ISBN: 9780521642989
Category : Computers
Languages : en
Pages : 694

Get Book Here

Book Description
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.

An Introduction to Causal Inference

An Introduction to Causal Inference PDF Author: Judea Pearl
Publisher: Createspace Independent Publishing Platform
ISBN: 9781507894293
Category : Causation
Languages : en
Pages : 0

Get Book Here

Book Description
This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation. -- p. 1.

Statistical Inference

Statistical Inference PDF Author: George Casella
Publisher: CRC Press
ISBN: 1040024025
Category : Mathematics
Languages : en
Pages : 1746

Get Book Here

Book Description
This classic textbook builds theoretical statistics from the first principles of probability theory. Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and natural extensions, and consequences, of previous concepts. It covers all topics from a standard inference course including: distributions, random variables, data reduction, point estimation, hypothesis testing, and interval estimation. Features The classic graduate-level textbook on statistical inference Develops elements of statistical theory from first principles of probability Written in a lucid style accessible to anyone with some background in calculus Covers all key topics of a standard course in inference Hundreds of examples throughout to aid understanding Each chapter includes an extensive set of graduated exercises Statistical Inference, Second Edition is primarily aimed at graduate students of statistics, but can be used by advanced undergraduate students majoring in statistics who have a solid mathematics background. It also stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures, while less focused on formal optimality considerations. This is a reprint of the second edition originally published by Cengage Learning, Inc. in 2001.

Statistical Inference

Statistical Inference PDF Author: Vijay K. Rohatgi
Publisher: Courier Corporation
ISBN: 0486136213
Category : Mathematics
Languages : en
Pages : 956

Get Book Here

Book Description
This treatment of probability and statistics examines discrete and continuous models, functions of random variables and random vectors, large-sample theory, more. Hundreds of problems (some with solutions). 1984 edition. Includes 144 figures and 35 tables.