Modeling Uncertainty with Fuzzy Logic

Modeling Uncertainty with Fuzzy Logic PDF Author: Asli Celikyilmaz
Publisher: Springer
ISBN: 3540899243
Category : Computers
Languages : en
Pages : 443

Get Book Here

Book Description
The world we live in is pervaded with uncertainty and imprecision. Is it likely to rain this afternoon? Should I take an umbrella with me? Will I be able to find parking near the campus? Should I go by bus? Such simple questions are a c- mon occurrence in our daily lives. Less simple examples: What is the probability that the price of oil will rise sharply in the near future? Should I buy Chevron stock? What are the chances that a bailout of GM, Ford and Chrysler will not s- ceed? What will be the consequences? Note that the examples in question involve both uncertainty and imprecision. In the real world, this is the norm rather than exception. There is a deep-seated tradition in science of employing probability theory, and only probability theory, to deal with uncertainty and imprecision. The mon- oly of probability theory came to an end when fuzzy logic made its debut. H- ever, this is by no means a widely accepted view. The belief persists, especially within the probability community, that probability theory is all that is needed to deal with uncertainty. To quote a prominent Bayesian, Professor Dennis Lindley, “The only satisfactory description of uncertainty is probability.

Modeling Uncertainty with Fuzzy Logic

Modeling Uncertainty with Fuzzy Logic PDF Author: Asli Celikyilmaz
Publisher: Springer
ISBN: 3540899243
Category : Computers
Languages : en
Pages : 443

Get Book Here

Book Description
The world we live in is pervaded with uncertainty and imprecision. Is it likely to rain this afternoon? Should I take an umbrella with me? Will I be able to find parking near the campus? Should I go by bus? Such simple questions are a c- mon occurrence in our daily lives. Less simple examples: What is the probability that the price of oil will rise sharply in the near future? Should I buy Chevron stock? What are the chances that a bailout of GM, Ford and Chrysler will not s- ceed? What will be the consequences? Note that the examples in question involve both uncertainty and imprecision. In the real world, this is the norm rather than exception. There is a deep-seated tradition in science of employing probability theory, and only probability theory, to deal with uncertainty and imprecision. The mon- oly of probability theory came to an end when fuzzy logic made its debut. H- ever, this is by no means a widely accepted view. The belief persists, especially within the probability community, that probability theory is all that is needed to deal with uncertainty. To quote a prominent Bayesian, Professor Dennis Lindley, “The only satisfactory description of uncertainty is probability.

Fuzzy Sets and Their Extensions: Representation, Aggregation and Models

Fuzzy Sets and Their Extensions: Representation, Aggregation and Models PDF Author: Humberto Bustince
Publisher: Springer
ISBN: 3540737235
Category : Computers
Languages : en
Pages : 674

Get Book Here

Book Description
This carefully edited book presents an up-to-date state of current research in the use of fuzzy sets and their extensions. It pays particular attention to foundation issues and to their application to four important areas where fuzzy sets are seen to be an important tool for modeling and solving problems. The book’s 34 chapters deal with the subject with clarity and effectiveness. They include four review papers introducing some non-standard representations

Modeling Uncertainty with Fuzzy Logic

Modeling Uncertainty with Fuzzy Logic PDF Author: Asli Celikyilmaz
Publisher: Springer Science & Business Media
ISBN: 3540899235
Category : Computers
Languages : en
Pages : 443

Get Book Here

Book Description
The world we live in is pervaded with uncertainty and imprecision. Is it likely to rain this afternoon? Should I take an umbrella with me? Will I be able to find parking near the campus? Should I go by bus? Such simple questions are a c- mon occurrence in our daily lives. Less simple examples: What is the probability that the price of oil will rise sharply in the near future? Should I buy Chevron stock? What are the chances that a bailout of GM, Ford and Chrysler will not s- ceed? What will be the consequences? Note that the examples in question involve both uncertainty and imprecision. In the real world, this is the norm rather than exception. There is a deep-seated tradition in science of employing probability theory, and only probability theory, to deal with uncertainty and imprecision. The mon- oly of probability theory came to an end when fuzzy logic made its debut. H- ever, this is by no means a widely accepted view. The belief persists, especially within the probability community, that probability theory is all that is needed to deal with uncertainty. To quote a prominent Bayesian, Professor Dennis Lindley, “The only satisfactory description of uncertainty is probability.

Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations

Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations PDF Author: Jesús Medina
Publisher: Springer
ISBN: 3319914731
Category : Computers
Languages : en
Pages : 835

Get Book Here

Book Description
This three volume set (CCIS 853-855) constitutes the proceedings of the 17th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2017, held in Cádiz, Spain, in June 2018. The 193 revised full papers were carefully reviewed and selected from 383 submissions. The papers are organized in topical sections on advances on explainable artificial intelligence; aggregation operators, fuzzy metrics and applications; belief function theory and its applications; current techniques to model, process and describe time series; discrete models and computational intelligence; formal concept analysis and uncertainty; fuzzy implication functions; fuzzy logic and artificial intelligence problems; fuzzy mathematical analysis and applications; fuzzy methods in data mining and knowledge discovery; fuzzy transforms: theory and applications to data analysis and image processing; imprecise probabilities: foundations and applications; mathematical fuzzy logic, mathematical morphology; measures of comparison and entropies for fuzzy sets and their extensions; new trends in data aggregation; pre-aggregation functions and generalized forms of monotonicity; rough and fuzzy similarity modelling tools; soft computing for decision making in uncertainty; soft computing in information retrieval and sentiment analysis; tri-partitions and uncertainty; decision making modeling and applications; logical methods in mining knowledge from big data; metaheuristics and machine learning; optimization models for modern analytics; uncertainty in medicine; uncertainty in Video/Image Processing (UVIP).

Smart Trends in Computing and Communications

Smart Trends in Computing and Communications PDF Author: Tomonobu Senjyu
Publisher: Springer Nature
ISBN: 9819907691
Category : Technology & Engineering
Languages : en
Pages : 823

Get Book Here

Book Description
This book gathers high-quality papers presented at the Seventh International Conference on Smart Trends in Computing and Communications (SmartCom 2022), organized by Global Knowledge Research Foundation (GR Foundation) from January 24–25, 2023, in Jaipur, India. It covers the state-of-the-art and emerging topics in information, computer communications, and effective strategies for their use in engineering and managerial applications. It also explores and discusses the latest technological advances in, and future directions for, information and knowledge computing and its applications.

Granular Computing and Intelligent Systems

Granular Computing and Intelligent Systems PDF Author: Witold Pedrycz
Publisher: Springer Science & Business Media
ISBN: 3642198201
Category : Technology & Engineering
Languages : en
Pages : 308

Get Book Here

Book Description
Information granules are fundamental conceptual entities facilitating perception of complex phenomena and contributing to the enhancement of human centricity in intelligent systems. The formal frameworks of information granules and information granulation comprise fuzzy sets, interval analysis, probability, rough sets, and shadowed sets, to name only a few representatives. Among current developments of Granular Computing, interesting options concern information granules of higher order and of higher type. The higher order information granularity is concerned with an effective formation of information granules over the space being originally constructed by information granules of lower order. This construct is directly associated with the concept of hierarchy of systems composed of successive processing layers characterized by the increasing levels of abstraction. This idea of layered, hierarchical realization of models of complex systems has gained a significant level of visibility in fuzzy modeling with the well-established concept of hierarchical fuzzy models where one strives to achieve a sound tradeoff between accuracy and a level of detail captured by the model and its level of interpretability. Higher type information granules emerge when the information granules themselves cannot be fully characterized in a purely numerical fashion but instead it becomes convenient to exploit their realization in the form of other types of information granules such as type-2 fuzzy sets, interval-valued fuzzy sets, or probabilistic fuzzy sets. Higher order and higher type of information granules constitute the focus of the studies on Granular Computing presented in this study. The book elaborates on sound methodologies of Granular Computing, algorithmic pursuits and an array of diverse applications and case studies in environmental studies, option price forecasting, and power engineering.

Intelligent Information Processing with Matlab

Intelligent Information Processing with Matlab PDF Author: Xiu Zhang
Publisher: Springer Nature
ISBN: 9819964490
Category : Technology & Engineering
Languages : en
Pages : 258

Get Book Here

Book Description
This book is a comprehensive collection of technologies and methods on intelligent information processing, which includes artificial neural network, fuzzy logic, and evolutionary computing. It also introduces the latest research directions and progress in intelligent information processing, such as transfer learning through convolutional neural network, time series prediction, clustering based on fuzzy neural network, test and evaluation of the traveling salesman problem, test and evaluation of continuous optimization problem, and more. This book promotes the development and application of intelligent information processing technology in the field of computational intelligence, effectively improving the intersection and integration of intelligent information processing methods. Researchers in computational intelligence and artificial intelligence technology, as well as teachers, students, and others interested in the subject, will benefit from this book.

Type-2 Fuzzy Logic: Theory and Applications

Type-2 Fuzzy Logic: Theory and Applications PDF Author: Oscar Castillo
Publisher: Springer Science & Business Media
ISBN: 3540762833
Category : Mathematics
Languages : en
Pages : 252

Get Book Here

Book Description
This book describes new methods for building intelligent systems using type-2 fuzzy logic and soft computing (SC) techniques. The authors extend the use of fuzzy logic to a higher order, which is called type-2 fuzzy logic. Combining type-2 fuzzy logic with traditional SC techniques, we can build powerful hybrid intelligent systems that can use the advantages that each technique offers. This book is intended to be a major reference tool and can be used as a textbook.

Type-2 Fuzzy Logic in Intelligent Control Applications

Type-2 Fuzzy Logic in Intelligent Control Applications PDF Author: Oscar Castillo
Publisher: Springer
ISBN: 364224663X
Category : Technology & Engineering
Languages : en
Pages : 187

Get Book Here

Book Description
We describe in this book, hybrid intelligent systems based mainly on type-2 fuzzy logic for intelligent control. Hybrid intelligent systems combine several intelligent computing paradigms, including fuzzy logic, and bio-inspired optimization algorithms, which can be used to produce powerful automatic control systems. The book is organized in three main parts, which contain a group of chapters around a similar subject. The first part consists of chapters with the main theme of theory and design algorithms, which are basically chapters that propose new models and concepts, which can be the basis for achieving intelligent control with interval type-2 fuzzy logic. The second part of the book is comprised of chapters with the main theme of evolutionary optimization of type-2 fuzzy systems in intelligent control with the aim of designing optimal type-2 fuzzy controllers for complex control problems in diverse areas of application, including mobile robotics, aircraft dynamics systems and hardware implementations. The third part of the book is formed with chapters dealing with the theme of bio-inspired optimization of type-2 fuzzy systems in intelligent control, which includes the application of particle swarm intelligence and ant colony optimization algorithms for obtaining optimal type-2 fuzzy controllers.

Edge Detection Methods Based on Generalized Type-2 Fuzzy Logic

Edge Detection Methods Based on Generalized Type-2 Fuzzy Logic PDF Author: Claudia I. Gonzalez
Publisher: Springer
ISBN: 3319539949
Category : Technology & Engineering
Languages : en
Pages : 94

Get Book Here

Book Description
In this book four new methods are proposed. In the first method the generalized type-2 fuzzy logic is combined with the morphological gra-dient technique. The second method combines the general type-2 fuzzy systems (GT2 FSs) and the Sobel operator; in the third approach the me-thodology based on Sobel operator and GT2 FSs is improved to be applied on color images. In the fourth approach, we proposed a novel edge detec-tion method where, a digital image is converted a generalized type-2 fuzzy image. In this book it is also included a comparative study of type-1, inter-val type-2 and generalized type-2 fuzzy systems as tools to enhance edge detection in digital images when used in conjunction with the morphologi-cal gradient and the Sobel operator. The proposed generalized type-2 fuzzy edge detection methods were tested with benchmark images and synthetic images, in a grayscale and color format. Another contribution in this book is that the generalized type-2 fuzzy edge detector method is applied in the preprocessing phase of a face rec-ognition system; where the recognition system is based on a monolithic neural network. The aim of this part of the book is to show the advantage of using a generalized type-2 fuzzy edge detector in pattern recognition applications. The main goal of using generalized type-2 fuzzy logic in edge detec-tion applications is to provide them with the ability to handle uncertainty in processing real world images; otherwise, to demonstrate that a GT2 FS has a better performance than the edge detection methods based on type-1 and type-2 fuzzy logic systems.