Image Processing and Analysis with Graphs

Image Processing and Analysis with Graphs PDF Author: Olivier Lezoray
Publisher: CRC Press
ISBN: 1439855080
Category : Computers
Languages : en
Pages : 562

Get Book Here

Book Description
Covering the theoretical aspects of image processing and analysis through the use of graphs in the representation and analysis of objects, Image Processing and Analysis with Graphs: Theory and Practice also demonstrates how these concepts are indispensible for the design of cutting-edge solutions for real-world applications. Explores new applications in computational photography, image and video processing, computer graphics, recognition, medical and biomedical imaging With the explosive growth in image production, in everything from digital photographs to medical scans, there has been a drastic increase in the number of applications based on digital images. This book explores how graphs—which are suitable to represent any discrete data by modeling neighborhood relationships—have emerged as the perfect unified tool to represent, process, and analyze images. It also explains why graphs are ideal for defining graph-theoretical algorithms that enable the processing of functions, making it possible to draw on the rich literature of combinatorial optimization to produce highly efficient solutions. Some key subjects covered in the book include: Definition of graph-theoretical algorithms that enable denoising and image enhancement Energy minimization and modeling of pixel-labeling problems with graph cuts and Markov Random Fields Image processing with graphs: targeted segmentation, partial differential equations, mathematical morphology, and wavelets Analysis of the similarity between objects with graph matching Adaptation and use of graph-theoretical algorithms for specific imaging applications in computational photography, computer vision, and medical and biomedical imaging Use of graphs has become very influential in computer science and has led to many applications in denoising, enhancement, restoration, and object extraction. Accounting for the wide variety of problems being solved with graphs in image processing and computer vision, this book is a contributed volume of chapters written by renowned experts who address specific techniques or applications. This state-of-the-art overview provides application examples that illustrate practical application of theoretical algorithms. Useful as a support for graduate courses in image processing and computer vision, it is also perfect as a reference for practicing engineers working on development and implementation of image processing and analysis algorithms.

Image Processing and Analysis with Graphs

Image Processing and Analysis with Graphs PDF Author: Olivier Lezoray
Publisher: CRC Press
ISBN: 1351833170
Category : Computers
Languages : en
Pages : 571

Get Book Here

Book Description
Covering the theoretical aspects of image processing and analysis through the use of graphs in the representation and analysis of objects, Image Processing and Analysis with Graphs: Theory and Practice also demonstrates how these concepts are indispensible for the design of cutting-edge solutions for real-world applications. Explores new applications in computational photography, image and video processing, computer graphics, recognition, medical and biomedical imaging With the explosive growth in image production, in everything from digital photographs to medical scans, there has been a drastic increase in the number of applications based on digital images. This book explores how graphs—which are suitable to represent any discrete data by modeling neighborhood relationships—have emerged as the perfect unified tool to represent, process, and analyze images. It also explains why graphs are ideal for defining graph-theoretical algorithms that enable the processing of functions, making it possible to draw on the rich literature of combinatorial optimization to produce highly efficient solutions. Some key subjects covered in the book include: Definition of graph-theoretical algorithms that enable denoising and image enhancement Energy minimization and modeling of pixel-labeling problems with graph cuts and Markov Random Fields Image processing with graphs: targeted segmentation, partial differential equations, mathematical morphology, and wavelets Analysis of the similarity between objects with graph matching Adaptation and use of graph-theoretical algorithms for specific imaging applications in computational photography, computer vision, and medical and biomedical imaging Use of graphs has become very influential in computer science and has led to many applications in denoising, enhancement, restoration, and object extraction. Accounting for the wide variety of problems being solved with graphs in image processing and computer vision, this book is a contributed volume of chapters written by renowned experts who address specific techniques or applications. This state-of-the-art overview provides application examples that illustrate practical application of theoretical algorithms. Useful as a support for graduate courses in image processing and computer vision, it is also perfect as a reference for practicing engineers working on development and implementation of image processing and analysis algorithms.

Graph Spectral Image Processing

Graph Spectral Image Processing PDF Author: Gene Cheung
Publisher: John Wiley & Sons
ISBN: 1789450284
Category : Computers
Languages : en
Pages : 322

Get Book Here

Book Description
Graph spectral image processing is the study of imaging data from a graph frequency perspective. Modern image sensors capture a wide range of visual data including high spatial resolution/high bit-depth 2D images and videos, hyperspectral images, light field images and 3D point clouds. The field of graph signal processing – extending traditional Fourier analysis tools such as transforms and wavelets to handle data on irregular graph kernels – provides new flexible computational tools to analyze and process these varied types of imaging data. Recent methods combine graph signal processing ideas with deep neural network architectures for enhanced performances, with robustness and smaller memory requirements. The book is divided into two parts. The first is centered on the fundamentals of graph signal processing theories, including graph filtering, graph learning and graph neural networks. The second part details several imaging applications using graph signal processing tools, including image and video compression, 3D image compression, image restoration, point cloud processing, image segmentation and image classification, as well as the use of graph neural networks for image processing.

Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis

Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis PDF Author: Carole H. Sudre
Publisher: Springer Nature
ISBN: 3030603652
Category : Computers
Languages : en
Pages : 233

Get Book Here

Book Description
This book constitutes the refereed proceedings of the Second International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2020, and the Third International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshops were held virtually due to the COVID-19 pandemic. For UNSURE 2020, 10 papers from 18 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world. GRAIL 2020 accepted 10 papers from the 12 submissions received. The workshop aims to bring together scientists that use and develop graph-based models for the analysis of biomedical images and to encourage the exploration of graph-based models for difficult clinical problems within a variety of biomedical imaging contexts.

Data Analytics on Graphs

Data Analytics on Graphs PDF Author: Ljubisa Stankovic
Publisher:
ISBN: 9781680839821
Category : Data mining
Languages : en
Pages : 556

Get Book Here

Book Description
Aimed at readers with a good grasp of the fundamentals of data analytics, this book sets out the fundamentals of graph theory and the emerging mathematical techniques for the analysis of a wide range of data acquired on graph environments. This book will be a useful friend and a helpful companion to all involved in data gathering and analysis.

Image Processing and Mathematical Morphology

Image Processing and Mathematical Morphology PDF Author: Frank Y. Shih
Publisher: CRC Press
ISBN: 1351834444
Category : Technology & Engineering
Languages : en
Pages : 423

Get Book Here

Book Description
In the development of digital multimedia, the importance and impact of image processing and mathematical morphology are well documented in areas ranging from automated vision detection and inspection to object recognition, image analysis and pattern recognition. Those working in these ever-evolving fields require a solid grasp of basic fundamentals, theory, and related applications—and few books can provide the unique tools for learning contained in this text. Image Processing and Mathematical Morphology: Fundamentals and Applications is a comprehensive, wide-ranging overview of morphological mechanisms and techniques and their relation to image processing. More than merely a tutorial on vital technical information, the book places this knowledge into a theoretical framework. This helps readers analyze key principles and architectures and then use the author’s novel ideas on implementation of advanced algorithms to formulate a practical and detailed plan to develop and foster their own ideas. The book: Presents the history and state-of-the-art techniques related to image morphological processing, with numerous practical examples Gives readers a clear tutorial on complex technology and other tools that rely on their intuition for a clear understanding of the subject Includes an updated bibliography and useful graphs and illustrations Examines several new algorithms in great detail so that readers can adapt them to derive their own solution approaches This invaluable reference helps readers assess and simplify problems and their essential requirements and complexities, giving them all the necessary data and methodology to master current theoretical developments and applications, as well as create new ones.

Digital Geometry

Digital Geometry PDF Author: Reinhard Klette
Publisher: Morgan Kaufmann
ISBN: 1558608613
Category : Computers
Languages : en
Pages : 676

Get Book Here

Book Description
The first book on digital geometry by the leaders in the field.

Introduction to Graph Signal Processing

Introduction to Graph Signal Processing PDF Author: Antonio Ortega
Publisher: Cambridge University Press
ISBN: 1108640176
Category : Technology & Engineering
Languages : en
Pages :

Get Book Here

Book Description
An intuitive and accessible text explaining the fundamentals and applications of graph signal processing. Requiring only an elementary understanding of linear algebra, it covers both basic and advanced topics, including node domain processing, graph signal frequency, sampling, and graph signal representations, as well as how to choose a graph. Understand the basic insights behind key concepts and learn how graphs can be associated to a range of specific applications across physical, biological and social networks, distributed sensor networks, image and video processing, and machine learning. With numerous exercises and Matlab examples to help put knowledge into practice, and a solutions manual available online for instructors, this unique text is essential reading for graduate and senior undergraduate students taking courses on graph signal processing, signal processing, information processing, and data analysis, as well as researchers and industry professionals.

Graph Representation Learning

Graph Representation Learning PDF Author: William L. William L. Hamilton
Publisher: Springer Nature
ISBN: 3031015886
Category : Computers
Languages : en
Pages : 141

Get Book Here

Book Description
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Image Processing, Analysis and Machine Vision

Image Processing, Analysis and Machine Vision PDF Author: Milan Sonka
Publisher: Springer
ISBN: 148993216X
Category : Computers
Languages : en
Pages : 579

Get Book Here

Book Description
Image Processing, Analysis and Machine Vision represent an exciting part of modern cognitive and computer science. Following an explosion of inter est during the Seventies, the Eighties were characterized by the maturing of the field and the significant growth of active applications; Remote Sensing, Technical Diagnostics, Autonomous Vehicle Guidance and Medical Imaging are the most rapidly developing areas. This progress can be seen in an in creasing number of software and hardware products on the market as well as in a number of digital image processing and machine vision courses offered at universities world-wide. There are many texts available in the areas we cover - most (indeed, all of which we know) are referenced somewhere in this book. The subject suffers, however, from a shortage of texts at the 'elementary' level - that appropriate for undergraduates beginning or completing their studies of the topic, or for Master's students - and the very rapid developments that have taken and are still taking place, which quickly age some of the very good text books produced over the last decade or so. This book reflects the authors' experience in teaching one and two semester undergraduate and graduate courses in Digital Image Processing, Digital Image Analysis, Machine Vision, Pattern Recognition and Intelligent Robotics at their respective institutions.