Ill-Posed Problems in Natural Sciences

Ill-Posed Problems in Natural Sciences PDF Author: Andrei N. Tikhonov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3112313933
Category : Mathematics
Languages : en
Pages : 608

Get Book Here

Book Description
No detailed description available for "Ill-Posed Problems in Natural Sciences".

Ill-Posed Problems in Natural Sciences

Ill-Posed Problems in Natural Sciences PDF Author: Andrei N. Tikhonov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3112313933
Category : Mathematics
Languages : en
Pages : 608

Get Book Here

Book Description
No detailed description available for "Ill-Posed Problems in Natural Sciences".

Ill-Posed Problems: Theory and Applications

Ill-Posed Problems: Theory and Applications PDF Author: A. Bakushinsky
Publisher: Springer Science & Business Media
ISBN: 9401110263
Category : Mathematics
Languages : en
Pages : 268

Get Book Here

Book Description
Recent years have been characterized by the increasing amountofpublications in the field ofso-called ill-posed problems. This is easilyunderstandable because we observe the rapid progress of a relatively young branch ofmathematics, ofwhich the first results date back to about 30 years ago. By now, impressive results have been achieved both in the theory ofsolving ill-posed problems and in the applicationsofalgorithms using modem computers. To mention just one field, one can name the computer tomography which could not possibly have been developed without modem tools for solving ill-posed problems. When writing this book, the authors tried to define the place and role of ill posed problems in modem mathematics. In a few words, we define the theory of ill-posed problems as the theory of approximating functions with approximately given arguments in functional spaces. The difference between well-posed and ill posed problems is concerned with the fact that the latter are associated with discontinuous functions. This approach is followed by the authors throughout the whole book. We hope that the theoretical results will be of interest to researchers working in approximation theory and functional analysis. As for particular algorithms for solving ill-posed problems, the authors paid general attention to the principles ofconstructing such algorithms as the methods for approximating discontinuous functions with approximately specified arguments. In this way it proved possible to define the limits of applicability of regularization techniques.

Theory of Linear Ill-Posed Problems and its Applications

Theory of Linear Ill-Posed Problems and its Applications PDF Author: Valentin K. Ivanov
Publisher: Walter de Gruyter
ISBN: 3110944820
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
This monograph is a revised and extended version of the Russian edition from 1978. It includes the general theory of linear ill-posed problems concerning e. g. the structure of sets of uniform regularization, the theory of error estimation, and the optimality method. As a distinguishing feature the book considers ill-posed problems not only in Hilbert but also in Banach spaces. It is natural that since the appearance of the first edition considerable progress has been made in the theory of inverse and ill-posed problems as wall as in ist applications. To reflect these accomplishments the authors included additional material e. g. comments to each chapter and a list of monographs with annotations.

Iterative Methods for Ill-posed Problems

Iterative Methods for Ill-posed Problems PDF Author: Anatoly B. Bakushinsky
Publisher: Walter de Gruyter
ISBN: 3110250640
Category : Mathematics
Languages : en
Pages : 153

Get Book Here

Book Description
Ill-posed problems are encountered in countless areas of real world science and technology. A variety of processes in science and engineering is commonly modeled by algebraic, differential, integral and other equations. In a more difficult case, it can be systems of equations combined with the associated initial and boundary conditions. Frequently, the study of applied optimization problems is also reduced to solving the corresponding equations. These equations, encountered both in theoretical and applied areas, may naturally be classified as operator equations. The current textbook will focus on iterative methods for operator equations in Hilbert spaces.

Regularization Theory for Ill-posed Problems

Regularization Theory for Ill-posed Problems PDF Author: Shuai Lu
Publisher: ISSN
ISBN: 9783110286465
Category : Numerical analysis
Languages : en
Pages : 0

Get Book Here

Book Description
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.

Numerical Methods for the Solution of Ill-Posed Problems

Numerical Methods for the Solution of Ill-Posed Problems PDF Author: A.N. Tikhonov
Publisher: Springer Science & Business Media
ISBN: 940158480X
Category : Mathematics
Languages : en
Pages : 257

Get Book Here

Book Description
Many problems in science, technology and engineering are posed in the form of operator equations of the first kind, with the operator and RHS approximately known. But such problems often turn out to be ill-posed, having no solution, or a non-unique solution, and/or an unstable solution. Non-existence and non-uniqueness can usually be overcome by settling for `generalised' solutions, leading to the need to develop regularising algorithms. The theory of ill-posed problems has advanced greatly since A. N. Tikhonov laid its foundations, the Russian original of this book (1990) rapidly becoming a classical monograph on the topic. The present edition has been completely updated to consider linear ill-posed problems with or without a priori constraints (non-negativity, monotonicity, convexity, etc.). Besides the theoretical material, the book also contains a FORTRAN program library. Audience: Postgraduate students of physics, mathematics, chemistry, economics, engineering. Engineers and scientists interested in data processing and the theory of ill-posed problems.

Regularization Algorithms for Ill-Posed Problems

Regularization Algorithms for Ill-Posed Problems PDF Author: Anatoly B. Bakushinsky
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110556383
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
This specialized and authoritative book contains an overview of modern approaches to constructing approximations to solutions of ill-posed operator equations, both linear and nonlinear. These approximation schemes form a basis for implementable numerical algorithms for the stable solution of operator equations arising in contemporary mathematical modeling, and in particular when solving inverse problems of mathematical physics. The book presents in detail stable solution methods for ill-posed problems using the methodology of iterative regularization of classical iterative schemes and the techniques of finite dimensional and finite difference approximations of the problems under study. Special attention is paid to ill-posed Cauchy problems for linear operator differential equations and to ill-posed variational inequalities and optimization problems. The readers are expected to have basic knowledge in functional analysis and differential equations. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems, and also to advanced students in these fields. Contents Introduction Regularization Methods For Linear Equations Finite Difference Methods Iterative Regularization Methods Finite-Dimensional Iterative Processes Variational Inequalities and Optimization Problems

Inverse Problems in the Mathematical Sciences

Inverse Problems in the Mathematical Sciences PDF Author: Charles W. Groetsch
Publisher: Springer Science & Business Media
ISBN: 3322992020
Category : Technology & Engineering
Languages : en
Pages : 159

Get Book Here

Book Description
Inverse problems are immensely important in modern science and technology. However, the broad mathematical issues raised by inverse problems receive scant attention in the university curriculum. This book aims to remedy this state of affairs by supplying an accessible introduction, at a modest mathematical level, to the alluring field of inverse problems. Many models of inverse problems from science and engineering are dealt with and nearly a hundred exercises, of varying difficulty, involving mathematical analysis, numerical treatment, or modelling of inverse problems, are provided. The main themes of the book are: causation problem modeled as integral equations; model identification problems, posed as coefficient determination problems in differential equations; the functional analytic framework for inverse problems; and a survey of the principal numerical methods for inverse problems. An extensive annotated bibliography furnishes leads on the history of inverse problems and a guide to the frontiers of current research.

Conjugate Gradient Type Methods for Ill-Posed Problems

Conjugate Gradient Type Methods for Ill-Posed Problems PDF Author: Martin Hanke
Publisher: Routledge
ISBN: 1351458329
Category : Mathematics
Languages : en
Pages : 148

Get Book Here

Book Description
The conjugate gradient method is a powerful tool for the iterative solution of self-adjoint operator equations in Hilbert space.This volume summarizes and extends the developments of the past decade concerning the applicability of the conjugate gradient method (and some of its variants) to ill posed problems and their regularization. Such problems occur in applications from almost all natural and technical sciences, including astronomical and geophysical imaging, signal analysis, computerized tomography, inverse heat transfer problems, and many more This Research Note presents a unifying analysis of an entire family of conjugate gradient type methods. Most of the results are as yet unpublished, or obscured in the Russian literature. Beginning with the original results by Nemirovskii and others for minimal residual type methods, equally sharp convergence results are then derived with a different technique for the classical Hestenes-Stiefel algorithm. In the final chapter some of these results are extended to selfadjoint indefinite operator equations. The main tool for the analysis is the connection of conjugate gradient type methods to real orthogonal polynomials, and elementary properties of these polynomials. These prerequisites are provided in a first chapter. Applications to image reconstruction and inverse heat transfer problems are pointed out, and exemplarily numerical results are shown for these applications.

Iterative Regularization Methods for Nonlinear Ill-Posed Problems

Iterative Regularization Methods for Nonlinear Ill-Posed Problems PDF Author: Barbara Kaltenbacher
Publisher: Walter de Gruyter
ISBN: 311020827X
Category : Mathematics
Languages : en
Pages : 205

Get Book Here

Book Description
Nonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods.