Author: Jing Xie
Publisher: International Monetary Fund
ISBN:
Category : Business & Economics
Languages : en
Pages : 38
Book Description
Many central banks and government agencies use nowcasting techniques to obtain policy relevant information about the business cycle. Existing nowcasting methods, however, have two critical shortcomings for this purpose. First, in contrast to machine-learning models, they do not provide much if any guidance on selecting the best explantory variables (both high- and low-frequency indicators) from the (typically) larger set of variables available to the nowcaster. Second, in addition to the selection of explanatory variables, the order of the autoregression and moving average terms to use in the baseline nowcasting regression is often set arbitrarily. This paper proposes a simple procedure that simultaneously selects the optimal indicators and ARIMA(p,q) terms for the baseline nowcasting regression. The proposed AS-ARIMAX (Adjusted Stepwise Autoregressive Moving Average methods with exogenous variables) approach significantly reduces out-of-sample root mean square error for nowcasts of real GDP of six countries, including India, Argentina, Australia, South Africa, the United Kingdom, and the United States.
Identifying Optimal Indicators and Lag Terms for Nowcasting Models
Author: Jing Xie
Publisher: International Monetary Fund
ISBN:
Category : Business & Economics
Languages : en
Pages : 38
Book Description
Many central banks and government agencies use nowcasting techniques to obtain policy relevant information about the business cycle. Existing nowcasting methods, however, have two critical shortcomings for this purpose. First, in contrast to machine-learning models, they do not provide much if any guidance on selecting the best explantory variables (both high- and low-frequency indicators) from the (typically) larger set of variables available to the nowcaster. Second, in addition to the selection of explanatory variables, the order of the autoregression and moving average terms to use in the baseline nowcasting regression is often set arbitrarily. This paper proposes a simple procedure that simultaneously selects the optimal indicators and ARIMA(p,q) terms for the baseline nowcasting regression. The proposed AS-ARIMAX (Adjusted Stepwise Autoregressive Moving Average methods with exogenous variables) approach significantly reduces out-of-sample root mean square error for nowcasts of real GDP of six countries, including India, Argentina, Australia, South Africa, the United Kingdom, and the United States.
Publisher: International Monetary Fund
ISBN:
Category : Business & Economics
Languages : en
Pages : 38
Book Description
Many central banks and government agencies use nowcasting techniques to obtain policy relevant information about the business cycle. Existing nowcasting methods, however, have two critical shortcomings for this purpose. First, in contrast to machine-learning models, they do not provide much if any guidance on selecting the best explantory variables (both high- and low-frequency indicators) from the (typically) larger set of variables available to the nowcaster. Second, in addition to the selection of explanatory variables, the order of the autoregression and moving average terms to use in the baseline nowcasting regression is often set arbitrarily. This paper proposes a simple procedure that simultaneously selects the optimal indicators and ARIMA(p,q) terms for the baseline nowcasting regression. The proposed AS-ARIMAX (Adjusted Stepwise Autoregressive Moving Average methods with exogenous variables) approach significantly reduces out-of-sample root mean square error for nowcasts of real GDP of six countries, including India, Argentina, Australia, South Africa, the United Kingdom, and the United States.
U-MIDAS
Author: Claudia Foroni
Publisher:
ISBN: 9783865587817
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9783865587817
Category :
Languages : en
Pages : 0
Book Description
The Oxford Handbook of Economic Forecasting
Author: Michael P. Clements
Publisher: OUP USA
ISBN: 0195398645
Category : Business & Economics
Languages : en
Pages : 732
Book Description
Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.
Publisher: OUP USA
ISBN: 0195398645
Category : Business & Economics
Languages : en
Pages : 732
Book Description
Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.
The Cointegrated VAR Model
Author: Katarina Juselius
Publisher: OUP Oxford
ISBN: 0191622966
Category : Business & Economics
Languages : en
Pages : 478
Book Description
This valuable text provides a comprehensive introduction to VAR modelling and how it can be applied. In particular, the author focuses on the properties of the Cointegrated VAR model and its implications for macroeconomic inference when data are non-stationary. The text provides a number of insights into the links between statistical econometric modelling and economic theory and gives a thorough treatment of identification of the long-run and short-run structure as well as of the common stochastic trends and the impulse response functions, providing in each case illustrations of applicability. This book presents the main ingredients of the Copenhagen School of Time-Series Econometrics in a transparent and coherent framework. The distinguishing feature of this school is that econometric theory and applications have been developed in close cooperation. The guiding principle is that good econometric work should take econometrics, institutions, and economics seriously. The author uses a single data set throughout most of the book to guide the reader through the econometric theory while also revealing the full implications for the underlying economic model. To test ensure full understanding the book concludes with the introduction of two new data sets to combine readers understanding of econometric theory and economic models, with economic reality.
Publisher: OUP Oxford
ISBN: 0191622966
Category : Business & Economics
Languages : en
Pages : 478
Book Description
This valuable text provides a comprehensive introduction to VAR modelling and how it can be applied. In particular, the author focuses on the properties of the Cointegrated VAR model and its implications for macroeconomic inference when data are non-stationary. The text provides a number of insights into the links between statistical econometric modelling and economic theory and gives a thorough treatment of identification of the long-run and short-run structure as well as of the common stochastic trends and the impulse response functions, providing in each case illustrations of applicability. This book presents the main ingredients of the Copenhagen School of Time-Series Econometrics in a transparent and coherent framework. The distinguishing feature of this school is that econometric theory and applications have been developed in close cooperation. The guiding principle is that good econometric work should take econometrics, institutions, and economics seriously. The author uses a single data set throughout most of the book to guide the reader through the econometric theory while also revealing the full implications for the underlying economic model. To test ensure full understanding the book concludes with the introduction of two new data sets to combine readers understanding of econometric theory and economic models, with economic reality.
MIDAS Versus Mixed-frequency VAR
Author: Vladimir Kuzin
Publisher:
ISBN: 9783865585097
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9783865585097
Category :
Languages : en
Pages : 0
Book Description
Machine Learning Techniques for Space Weather
Author: Enrico Camporeale
Publisher: Elsevier
ISBN: 0128117893
Category : Science
Languages : en
Pages : 454
Book Description
Machine Learning Techniques for Space Weather provides a thorough and accessible presentation of machine learning techniques that can be employed by space weather professionals. Additionally, it presents an overview of real-world applications in space science to the machine learning community, offering a bridge between the fields. As this volume demonstrates, real advances in space weather can be gained using nontraditional approaches that take into account nonlinear and complex dynamics, including information theory, nonlinear auto-regression models, neural networks and clustering algorithms. Offering practical techniques for translating the huge amount of information hidden in data into useful knowledge that allows for better prediction, this book is a unique and important resource for space physicists, space weather professionals and computer scientists in related fields. - Collects many representative non-traditional approaches to space weather into a single volume - Covers, in an accessible way, the mathematical background that is not often explained in detail for space scientists - Includes free software in the form of simple MATLAB® scripts that allow for replication of results in the book, also familiarizing readers with algorithms
Publisher: Elsevier
ISBN: 0128117893
Category : Science
Languages : en
Pages : 454
Book Description
Machine Learning Techniques for Space Weather provides a thorough and accessible presentation of machine learning techniques that can be employed by space weather professionals. Additionally, it presents an overview of real-world applications in space science to the machine learning community, offering a bridge between the fields. As this volume demonstrates, real advances in space weather can be gained using nontraditional approaches that take into account nonlinear and complex dynamics, including information theory, nonlinear auto-regression models, neural networks and clustering algorithms. Offering practical techniques for translating the huge amount of information hidden in data into useful knowledge that allows for better prediction, this book is a unique and important resource for space physicists, space weather professionals and computer scientists in related fields. - Collects many representative non-traditional approaches to space weather into a single volume - Covers, in an accessible way, the mathematical background that is not often explained in detail for space scientists - Includes free software in the form of simple MATLAB® scripts that allow for replication of results in the book, also familiarizing readers with algorithms
Data Science for Economics and Finance
Author: Sergio Consoli
Publisher: Springer Nature
ISBN: 3030668916
Category : Application software
Languages : en
Pages : 357
Book Description
This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.
Publisher: Springer Nature
ISBN: 3030668916
Category : Application software
Languages : en
Pages : 357
Book Description
This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.
Bayesian Econometric Methods
Author: Joshua Chan
Publisher: Cambridge University Press
ISBN: 1108423388
Category : Business & Economics
Languages : en
Pages : 491
Book Description
Illustrates Bayesian theory and application through a series of exercises in question and answer format.
Publisher: Cambridge University Press
ISBN: 1108423388
Category : Business & Economics
Languages : en
Pages : 491
Book Description
Illustrates Bayesian theory and application through a series of exercises in question and answer format.
Dynamic Factor Models
Author: Jörg Breitung
Publisher:
ISBN: 9783865580979
Category :
Languages : en
Pages : 29
Book Description
Publisher:
ISBN: 9783865580979
Category :
Languages : en
Pages : 29
Book Description
Short-Term Forecasting for Empirical Economists
Author: Maximo Camacho
Publisher:
ISBN: 9781601987426
Category : Business & Economics
Languages : en
Pages : 74
Book Description
Short-term Forecasting for Empirical Economists seeks to close the gap between research and applied short-term forecasting. The authors review some of the key theoretical results and empirical findings in the recent literature on short-term forecasting, and translate these findings into economically meaningful techniques to facilitate their widespread application to compute short-term forecasts in economics, and to monitor the ongoing business cycle developments in real time.
Publisher:
ISBN: 9781601987426
Category : Business & Economics
Languages : en
Pages : 74
Book Description
Short-term Forecasting for Empirical Economists seeks to close the gap between research and applied short-term forecasting. The authors review some of the key theoretical results and empirical findings in the recent literature on short-term forecasting, and translate these findings into economically meaningful techniques to facilitate their widespread application to compute short-term forecasts in economics, and to monitor the ongoing business cycle developments in real time.