Author: Lauren Kanefsky
Publisher:
ISBN: 9780760607930
Category : Inference
Languages : en
Pages : 220
Book Description
No Glamour Inferences
Author: Lauren Kanefsky
Publisher:
ISBN: 9780760607930
Category : Inference
Languages : en
Pages : 220
Book Description
Publisher:
ISBN: 9780760607930
Category : Inference
Languages : en
Pages : 220
Book Description
Specific Skills Series: Making Inferences
Author:
Publisher: Remedia Publications
ISBN: 9781596398337
Category :
Languages : en
Pages : 32
Book Description
Publisher: Remedia Publications
ISBN: 9781596398337
Category :
Languages : en
Pages : 32
Book Description
Computer Age Statistical Inference
Author: Bradley Efron
Publisher: Cambridge University Press
ISBN: 1108107958
Category : Mathematics
Languages : en
Pages : 496
Book Description
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Publisher: Cambridge University Press
ISBN: 1108107958
Category : Mathematics
Languages : en
Pages : 496
Book Description
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
The Wretched Stone
Author: Chris Van Allsburg
Publisher: Houghton Mifflin Harcourt
ISBN: 9780395533079
Category : Fiction
Languages : en
Pages : 40
Book Description
A strange glowing stone picked up on a sea voyage captivates a ship's crew and has a terrible transforming effect on them.
Publisher: Houghton Mifflin Harcourt
ISBN: 9780395533079
Category : Fiction
Languages : en
Pages : 40
Book Description
A strange glowing stone picked up on a sea voyage captivates a ship's crew and has a terrible transforming effect on them.
Inferences and Drawing Conclusions, Grades 4-8
Author: Linda Beech
Publisher: Teaching Resources
ISBN: 9780439554114
Category : Education
Languages : en
Pages : 0
Book Description
Nonfiction passages and test-formatted questions give kids the practice they need to build these reading comprehension skills.
Publisher: Teaching Resources
ISBN: 9780439554114
Category : Education
Languages : en
Pages : 0
Book Description
Nonfiction passages and test-formatted questions give kids the practice they need to build these reading comprehension skills.
The Book of Why
Author: Judea Pearl
Publisher: Basic Books
ISBN: 0465097618
Category : Computers
Languages : en
Pages : 465
Book Description
A Turing Award-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence "Correlation is not causation." This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk. Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality -- the study of cause and effect -- on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl's work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.
Publisher: Basic Books
ISBN: 0465097618
Category : Computers
Languages : en
Pages : 465
Book Description
A Turing Award-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence "Correlation is not causation." This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk. Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality -- the study of cause and effect -- on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl's work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.
Imagination and Convention
Author: Ernest LePore
Publisher:
ISBN: 0198717180
Category : Language Arts & Disciplines
Languages : en
Pages : 305
Book Description
How do hearers manage to understand speakers? And how do speakers manage to shape hearers' understanding? Lepore and Stone show that standard views about the workings of semantics and pragmatics are unsatisfactory. They advance an alternative view which better captures what is going on in linguistic communication.
Publisher:
ISBN: 0198717180
Category : Language Arts & Disciplines
Languages : en
Pages : 305
Book Description
How do hearers manage to understand speakers? And how do speakers manage to shape hearers' understanding? Lepore and Stone show that standard views about the workings of semantics and pragmatics are unsatisfactory. They advance an alternative view which better captures what is going on in linguistic communication.
Causal Inference in Statistics, Social, and Biomedical Sciences
Author: Guido W. Imbens
Publisher: Cambridge University Press
ISBN: 0521885884
Category : Business & Economics
Languages : en
Pages : 647
Book Description
This text presents statistical methods for studying causal effects and discusses how readers can assess such effects in simple randomized experiments.
Publisher: Cambridge University Press
ISBN: 0521885884
Category : Business & Economics
Languages : en
Pages : 647
Book Description
This text presents statistical methods for studying causal effects and discusses how readers can assess such effects in simple randomized experiments.
Causal Inference in Statistics
Author: Judea Pearl
Publisher: John Wiley & Sons
ISBN: 1119186862
Category : Mathematics
Languages : en
Pages : 162
Book Description
CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.
Publisher: John Wiley & Sons
ISBN: 1119186862
Category : Mathematics
Languages : en
Pages : 162
Book Description
CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.
Probability and Statistical Inference
Author: Robert Bartoszynski
Publisher: John Wiley & Sons
ISBN: 1119243823
Category : Mathematics
Languages : en
Pages : 592
Book Description
Updated classic statistics text, with new problems and examples Probability and Statistical Inference, Third Edition helps students grasp essential concepts of statistics and its probabilistic foundations. This book focuses on the development of intuition and understanding in the subject through a wealth of examples illustrating concepts, theorems, and methods. The reader will recognize and fully understand the why and not just the how behind the introduced material. In this Third Edition, the reader will find a new chapter on Bayesian statistics, 70 new problems and an appendix with the supporting R code. This book is suitable for upper-level undergraduates or first-year graduate students studying statistics or related disciplines, such as mathematics or engineering. This Third Edition: Introduces an all-new chapter on Bayesian statistics and offers thorough explanations of advanced statistics and probability topics Includes 650 problems and over 400 examples - an excellent resource for the mathematical statistics class sequence in the increasingly popular "flipped classroom" format Offers students in statistics, mathematics, engineering and related fields a user-friendly resource Provides practicing professionals valuable insight into statistical tools Probability and Statistical Inference offers a unique approach to problems that allows the reader to fully integrate the knowledge gained from the text, thus, enhancing a more complete and honest understanding of the topic.
Publisher: John Wiley & Sons
ISBN: 1119243823
Category : Mathematics
Languages : en
Pages : 592
Book Description
Updated classic statistics text, with new problems and examples Probability and Statistical Inference, Third Edition helps students grasp essential concepts of statistics and its probabilistic foundations. This book focuses on the development of intuition and understanding in the subject through a wealth of examples illustrating concepts, theorems, and methods. The reader will recognize and fully understand the why and not just the how behind the introduced material. In this Third Edition, the reader will find a new chapter on Bayesian statistics, 70 new problems and an appendix with the supporting R code. This book is suitable for upper-level undergraduates or first-year graduate students studying statistics or related disciplines, such as mathematics or engineering. This Third Edition: Introduces an all-new chapter on Bayesian statistics and offers thorough explanations of advanced statistics and probability topics Includes 650 problems and over 400 examples - an excellent resource for the mathematical statistics class sequence in the increasingly popular "flipped classroom" format Offers students in statistics, mathematics, engineering and related fields a user-friendly resource Provides practicing professionals valuable insight into statistical tools Probability and Statistical Inference offers a unique approach to problems that allows the reader to fully integrate the knowledge gained from the text, thus, enhancing a more complete and honest understanding of the topic.